
                                                                                                                                                     

1                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

UNIT-1 

INTRODUCTION TO OOP AND JAVA 

Overview of OOP – Object oriented programming paradigms – Features of 

Object-Oriented Programming – Java Buzzwords – Overview of Java – Data 

Types, Variables and Arrays – Operators – Control Statements – Programming 

Structures in Java – Defining classes in Java – Constructors-Methods -Access 

specifiers – Static members- Java Doc comments 

1.1 OVERVIEW OF OOP 

1.1.1 What is OOP 

✓ OOP (Object-oriented programming) is a programming paradigm based on the concept 

of "objects", which can contain data and code: data in the form of fields (often known 

as attributes or properties), and code, in the form of procedures (often known as 

methods). 

1.1.1 Procedure Oriented Programming vs Object Oriented Programming 

 

Procedure Oriented Programming Object Oriented Programming 
Program is divided into functions Program is divided into classes and 

objects 

It deals with algorithms It deals with data 

Data move from function to function Functions that operate on data are bind to 

form classes 

It is a Top-Down Approach It is a Bottom-up approach 

Do not have any specific access specifiers It has access specifiers like public, 

private and protected 

Less Secure More Secure 

It follows No overloading It follows operator overloading and 

function overloading 

Importance is not given to data but to 

functions as well as sequence of actions to be 

done 

Importance is given to data rather than 

procedures 

Does not provide any support for new data 

types 

Provides support to new Data types 

Poor Modeling to Real world problems Strong Modeling to Real world problems 

Its in not easy to maintain project if it is too 

complex 

It’s easy to maintain project even if it is 

too complex 

Productivity is Low Productivity is High 

Example: C, VB, Fortran, Pascal Example: C++, JAVA, Python 



                                                                                                                                                     

2                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 

1.1.2 Basic Concepts of OOPS 

✓ List of OOPs Concepts in Java 

• Object  

• Class 

• Abstraction 

• Inheritance  

• Polymorphism 

• Encapsulation 

❖ Object 

✓ Any entity that has state and behavior is known as an object. For example, 

a chair, pen, table, keyboard, bike, etc. It can be physical or logical. 

✓ Example: A dog is an object because it has states like color, name, breed, 

etc. as well as behaviors like wagging the tail, barking, eating, etc. 

❖ Class 

✓ Collection of objects is called class. It is a logical entity. 

✓ A class can also be defined as a blueprint from which you can create an 

individual object. Class doesn't consume any space. 

✓ Example: If you had a class called “Expensive Cars” it could have objects 

like Mercedes, BMW, Toyota, etc. Its properties(data) can be price or speed 

of these cars. While the methods may be performed with these cars are 

driving, reverse, braking etc. 

                         

 



                                                                                                                                                     

3                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

❖ Inheritance 

✓ When one object acquires all the properties and behaviors of a parent object, 

it is known as inheritance. It provides code reusability. It is used to achieve 

runtime polymorphism. 

✓ Java supports the following four types of inheritance: 

• Single Inheritance 

• Multi-level Inheritance 

• Hierarchical Inheritance 

• Hybrid Inheritance 

❖ Polymorphism 

✓ If one task is performed in different ways, it is known as polymorphism. 

✓ For example, a cat speaks meow, dog barks woof, etc. 

✓ To draw something, for example, shape, triangle, rectangle, etc. 

✓ In Java, we use method overloading and method overriding to achieve 

polymorphism. 

 

❖ Abstraction 

✓ Hiding internal details and showing functionality is known as abstraction. 

✓ For example, while driving a car, you do not have to be concerned with its 

internal working. Here you just need to concern about parts like steering 

wheel, Gears, accelerator, etc. 

✓ In Java, we use abstract class and interface to achieve abstraction. 

 



                                                                                                                                                     

4                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

❖ Encapsulation 

✓ Binding (or wrapping) code and data together into a single unit are known 

as encapsulation. 

✓ For example, a capsule, it is wrapped with different medicines. 

✓ A java class is the example of encapsulation. 

 

1.2 Features of Object-Oriented Programming or JAVA Buzzwords 

✓ The Java programming language is a high-level language that can be characterized by 

all the following buzzwords: 

• Simple 

• Object-oriented 

• Distributed 

• Interpreted 

• Robust 

• Secure 

• Architecture neutral 

• Portable 

• High performance 

• Multithreaded 

• Dynamic 

❖ Simple 

✓ Java was designed to be easy for a professional programmer to learn and 

use effectively. 

✓ It’s simple and easy to learn if you already know the basic concepts of 

Object Oriented Programming. 



                                                                                                                                                     

5                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

✓ Java has removed many complicated and rarely used features, for example, 

explicit pointers, operator overloading, etc. 

❖ Object Oriented 

✓ Java is true object-oriented language. 

✓ Almost “Everything is an Object” 

✓ The object model in Java is simple and easy to extend. 

✓ Basic concepts of OOPs are: 

• Object 

• Class 

• Inheritance 

• Polymorphism 

• Abstraction 

• Encapsulation 

❖ Platform Independent 

✓ Platform-independent means a program compiled on one machine can be 

executed on any machine in the world without any change. Java achieves 

platform independence by using the concept of the BYTE code. 

✓ The Java Compiler converts the source code into an intermediate 

code called the byte code and this byte code is further translated to machine-

dependent form by another layer of software called JVM (Java Virtual 

Machine). 

 



                                                                                                                                                     

6                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

❖ Architecture-neutral  

 

✓ The java byte code is independent of the underlying platform that the 

program is running on. For example, it doesn't matter if your operating 

system is 32-bit or 64-bit, the Java byte code is exactly the same. 

 

❖ Portable  

✓ Java is portable because it facilitates you to carry the Java bytecode to any 

platform. It doesn't require any implementation. 

❖ Distributed 

✓ Java is distributed because it facilitates users to create distributed 

applications in Java. 

✓ Java helps us to achieve this by providing the concept of RMI (Remote 

Method Invocation) and EJB (Enterprise JavaBeans). 

❖ Robust 

✓ It uses strong memory management. 

✓ There is a lack of pointers that avoids security problems. 

✓ Java provides automatic garbage collection which runs on the Java Virtual 

Machine to get rid of objects which are not being used by a Java application 

anymore. 



                                                                                                                                                     

7                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

✓ Java also provides the concept of exception handling which identifies 

runtime errors and eliminates them. 

❖ Secure 

✓ Java is best known for its security. With Java, we can develop virus-free 

systems. Java is secured because: 

• No explicit pointer 

• Java Programs run inside a virtual machine sandbox 

 

❖ Multi-threaded 

✓ A thread is like a separate program, executing concurrently. 

✓ We can write Java programs that deal with many tasks at once by defining 

multiple threads. 

✓ The main advantage of multi-threading is that it doesn't occupy memory for 

each thread. It shares a common memory area. 

✓ Threads are important for multi-media, Web applications, etc. 

 



                                                                                                                                                     

8                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

❖ High Performance 

✓ Java provides high performance with the use of “JIT – Just In Time compiler”, in 

which the compiler compiles the code on-demand basis, that is, it compiles only 

that method which is being called. This saves time and makes it more efficient. 

 

 

❖ Interactive 

✓ Java is interactive because its code supports effective CUI (Character User 

Interface) and GUI (Graphical User Interface) programs. It greatly improves the 

interactive performance of graphical applications. 

❖ Dynamic and Extensible 

✓ Java is dynamic and extensible means with the help of OOPs, we can add classes 

and add new methods to classes, creating new classes through subclasses. This 

makes it easier for us to expand our own classes and even modify them. 

1.3 Overview of Java 

1.3.1 Introduction to Java 

➢ JAVA was developed by James Gosling at Sun Microsystems Inc in the year 1995, 

later acquired by Oracle Corporation. 

➢ It is a simple programming language. 

➢ Java makes writing, compiling, and debugging programming easy. 

➢ It helps to create reusable code and modular programs. 

➢ Java is a class-based, object-oriented programming language 

➢ Java applications are compiled to byte code that can run on any Java Virtual 

Machine.  

➢ The syntax of Java is similar to c/c++. 



                                                                                                                                                     

9                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.3.2 History of Java 

➢ It is a programming language created in 1991. 

➢ James Gosling, Mike Sheridan, and Patrick Naughton, a team of Sun engineers 

known as the Green team initiated the Java language in 1991. 

➢ In 1995 Java was developed by James Gosling, who is known as the Father of Java. 

➢ Sun Microsystems released its first public implementation in 1996 as Java 1.0. It 

promised Write Once, Run Anywhere (WORA), providing no-cost run-times on 

popular platforms. 

➢ Java1.0 compiler was re-written in Java by Arthur Van Hoff to strictly comply with 

its specifications. With the arrival of Java 2, new versions had multiple 

configurations built for different types of platforms. 

1.3.3 Java programming language is named JAVA. Why? 

➢ Java is the name of an island in Indonesia where the first coffee (named java coffee) 

was produced. 

➢ And this name was chosen by James Gosling while having coffee near his office. 

Java is just a name, not an acronym. 

➢ Initially the name given was OAK 

1.3.4 Java Terminology 

➢ Java Virtual Machine (JVM): 

• There are three execution phases of a program. They are written, compile 

and run the program. 

o Writing a program is done by a java programmer. 

o JAVAC compiler which is a primary Java compiler included in the 

Java development kit (JDK). It takes the Java program as input and 

generates bytecode as output. 

o In the Running phase of a program, JVM executes the bytecode 

generated by the compiler. 

o Every Operating System has a different JVM but the output they 

produce after the execution of bytecode is the same across all the 

operating systems. This is why Java is known as a platform-

independent language. 



                                                                                                                                                     

10                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

➢ Bytecode in the Development process: 

• Javac compiler of JDK compiles the java source code into bytecode so that 

it can be executed by JVM. It is saved as .class file by the compiler. To view 

the bytecode, a disassembler like javap can be used. 

➢ Java Development Kit (JDK): 

• It is a complete Java development kit that includes everything including 

compiler, Java Runtime Environment (JRE), java debuggers, java docs, etc. 

• For the program to execute in java, we need to install JDK on our computer 

in order to create, compile and run the java program. 

➢ Java Runtime Environment (JRE): 

• JDK includes JRE. JRE installation on our computers allows the java 

program to run, however, we cannot compile it.  

• JRE includes a browser, JVM, applet supports, and plugins. For running the 

java program, a computer needs JRE. 

➢ Garbage Collector: 

• In Java, programmers can’t delete the objects. To delete or recollect that 

memory JVM has a program called Garbage Collector. 

• Garbage Collectors can recollect the objects that are not referenced. So Java 

makes the life of a programmer easy by handling memory management. 

➢ ClassPath: 

• The classpath is the file path where the java runtime and Java compiler look 

for .class files to load. 

• By default, JDK provides many libraries. If you want to include external 

libraries they should be added to the classpath. 

1.3.5 Applications of JAVA 

➢ Mobile applications (specially Android apps) 

➢ Desktop applications 

➢ Web applications 

➢ Web servers and application servers 

➢ Games 

➢ Database connection 



                                                                                                                                                     

11                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.3.6 Advantages of using JAVA 

➢ Java works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc.) 

➢ It is one of the most popular programming language in the world 

➢ It is easy to learn and simple to use 

➢ It is open-source and free 

➢ It is secure, fast and powerful 

➢ It has a huge community support (tens of millions of developers) 

➢ Java is an object-oriented language which gives a clear structure to programs and 

allows code to be reused, lowering development costs 

1.4 Data Types, Variables and Arrays 

1.4.1 Java Data Types 

➢ A data type is a classification of data which tells the compiler or interpreter how 

the programmer intends to use the data. 

➢ Data types specify the different sizes and values that can be stored in the variable. 

There are two types of data types in Java: 

o Primitive data types:  

o Non-primitive data types:  

1.4.1.1 Java Primitive Data Types 

➢ The primitive data types are the predefined data types of Java. They specify the 

size and type of any standard values. 

➢ The primitive data types include boolean, char, byte, short, int, long, float 

and double. 

➢ Non-primitive data types: The non-primitive data types include Classes, 

Interfaces, and Arrays. 



                                                                                                                                                     

12                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 

Byte Data Type 

➢ The byte data type is an example of primitive data type. It is an 8-bit signed two's 

complement integer. Its value-range lies between -128 to 127 (inclusive). Its minimum 

value is -128 and maximum value is 127. Its default value is 0. 

➢ The byte data type is used to save memory in large arrays where the memory savings is 

most required. It saves space because a byte is 4 times smaller than an integer. 

➢ Example: byte a = 10, byte b = -20; 

Short Data Type 

➢ The short data type is a 16-bit signed two's complement integer. Its value-range lies 

between -32,768 to 32,767 (inclusive). Its minimum value is -32,768 and maximum value 

is 32,767. Its default value is 0. 

➢ The short data type can also be used to save memory just like byte data type. A short data 

type is 2 times smaller than an integer. 

➢ Example: short s = 10000, short r = -5000; 



                                                                                                                                                     

13                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

Int Data Type  

➢ The int data type is a 32-bit signed two's complement integer. 

➢ Its minimum value is - 2,147,483,648 and maximum value is 2,147,483,647.  

➢ Its default value is 0. 

➢ Example: int a = 100000, int b = -200000 ; 

Long Data Type 

➢ The long data type is a 64-bit two's complement integer. 

➢ Its minimum value is - 9,223,372,036,854,775,808 and maximum value is 

9,223,372,036,854,775,807. 

➢ Its default value is 0. 

➢ Example: long a = 100000L, long b = -200000L; 

Float Data Type   

➢ The float data type is a single-precision 32-bit IEEE 754 floating point. Its value range is 

unlimited. It is recommended to use a float (instead of double) if you need to save memory 

in large arrays of floating-point numbers. 

➢ Its default value is 0.0F. 

➢ Example: float f1 = 234.5f; 

Double Data Type 

➢ The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range 

is unlimited. 

➢ The double data type is generally used for decimal values just like float. 

➢ Its default value is 0.0d. 

➢ Example: double d1 = 12.3; 

Char Data Type 

➢ The char data type is a single 16-bit Unicode character. 

➢ Its value-range lies between '\u0000' (or 0) to '\uffff' (or 65,535 inclusive). 

➢ The char data type is used to store characters. 



                                                                                                                                                     

14                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

➢ Example: char letterA = 'A'; 

1.4.1.2 Example program using different Data Types in JAVA 

    class Datatypes  

   { 

    public static void main (String[] args)  

   { 

    int a = 5;               // integer (whole number) 

    float f = 5.99f;    // floating point number 

    double d=19.99d; // double 

    char ch = 'D';         // character 

    boolean B = true;       // boolean 

    String S = "Hello";     // String     

    System.out.println(a); 

    System.out.println(f); 

    System.out.println(d); 

    System.out.println(ch); 

    System.out.println(B); 

    System.out.println(S); 

  } 

} 

OUTPUT 

 

 

 



                                                                                                                                                     

15                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.4.1.3 Java Non-Primitive Data Types 

➢ Non primitive datatypes are those which uses primitive datatype as base like array, 

class etc. 

➢ Non-primitive data types are called reference types because they refer to objects. 

Strings 

• The String data type is used to store a sequence of characters (text). Str ing 

values must be surrounded by double quotes: 

• Example:  

String greeting = "Hello World"; 

System.out.println(greeting); 

1.4.1.3 Difference between Primitive and Non-Primitive Data Types 

Primitive Data Type Non-Primitive Data Type 

Predefined in JAVA Created by the programmer (except 

String) 

Primitive types cannot be used to call 

methods  

Non-primitive types can be used to call 

methods to perform certain operations 

A primitive type always has a value. It 

can’t be Null. 

Non-primitive types can be null. 

A primitive type starts with a lowercase 

letter 

Non-primitive types start with an 

uppercase letter. 

The size of a primitive type depends on 

the data type 

Non-primitive types have all the same 

size. 

 

1.4.2 Variables in JAVA 

➢ Variables are containers for storing data values. 

➢ In Java, there are different types of variables, for example: 

• String - stores text, such as "Hello". String values are surrounded by double 

quotes 

• int - stores integers (whole numbers), without decimals, such as 123 or -123 



                                                                                                                                                     

16                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

• float - stores floating point numbers, with decimals, such as 19.99 or -19.99 

• char - stores single characters, such as 'a' or 'B'. Char values are surrounded 

by single quotes 

• boolean - stores values with two states: true or false 

1.4.2.1 Declaring (Creating) Variables 

 

➢ Where type is one of Java's types (such as int or String), and variable Name is 

the name of the variable (such as x or name). The equal sign is used to assign 

values to the variable. 

1.4.2.2 Types of Variables  

 Local Variable 

➢ These are the variables declared within a method. Within the method we can 

directly access the variables. Outside the method we can’t access these 

variables. Variables can be directly accessed without creating objects. 

 Instance Variable 

➢ Instance variables are declared inside the class, but not inside the method. For 

accessing instance Variable, we have to create an object. Without creating 

object, we can’t access the Instance variable. 

 Static Variables 

➢ Declared using Static Keyword. For Static Variables Memory is allotted only 

once. Static Variables can be directly accessed without creating objects. 

Example Program for illustrating the different types of variables 

class Variables 

    { 

     static int c=30;              //Static Variable 

     int a=10;                    // Instance Variable 



                                                                                                                                                     

17                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

      public static void main (String args[]) 

        { 

         int b=20;              //Local Variables 

         System.out.println("Static Variable=" +c); 

         System.out.println("Local Variable=" +b); 

         Variables V=new Variables();   //Object Creation 

            System.out.println("Instance Variable=" +V.a);   //Accessing instance variable using object 

        } 

   } 

OUTPUT 

 

1.4.3 JAVA Arrays 

➢ Arrays are used to store multiple values in a single variable, instead of declaring 

separate variables for each value. 

➢ To declare an array, define the variable type with square brackets: 

 

Fig: An array of 10 elements. 

➢ Each item in an array is called an element, and each element is accessed by its 

numerical index. 

➢ As shown in the above figure, numbering begins with 0. The 9th element, for 

example, would therefore be accessed at index 8. 



                                                                                                                                                     

18                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.4.3.1 Types of Arrays 

➢ Single Dimensional Array 

➢ Multidimensional Array 

1.4.3.1.1 Single Dimensional Array 

➢ A Single-Dimensional Array in Java programming is a special type of variable 

that can store multiple values of only a single data type such as int, float, double, 

char, structure, pointer, etc. at a contagious location in computer memory. 

➢ Here contagious location means at a fixed gap in computer memory. 

1.4.3.1.2 Declaration Syntax of a One-Dimensional Array in Java 

• Method 1: datatype variable_name[ ] = new datatype[size]; 

• Method 2: datatype[ ] variable_name = new datatype[size]; 

 

o Here, size is the number of elements we want to store in the array. 

 
➢ Example 

 

• int a[ ]=new int[5]; 

• int [ ] a=new int[5]; 

➢ Once we declare the 1D Array, it will look like as shown in the picture below: 

 

➢ In above image we can see that the name of the one-dimensional array is a and 

it can store 5 integer numbers. Size of the array is 5. Index of the array is 0, 1, 

2, 3 and 4. 

➢ The first index is called Lower Bound, and the last index is called an Upper 

Bound. Upper Bound of a one dimensional is always Size – 1. 

 

 



                                                                                                                                                     

19                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.4.3.1.3 Declaration and Initialization of a One-Dimensional Array in Java 

➢ In Java programming a one-dimensional array can be declared and initialized 

in several ways. 

➢ Method 1: 

• int a[ ]=new int[ ] {12,18,6}; 

 

➢ Method 2 

• int a[ ]={7,12,9}; 

 

➢ Method 3 

• int a[ ]=new int[3]; 

 

1.4.3.1.4 Example Program using Single-Dimensional Arrays 

class SingleDimension 

  { 

  public static void main(String ar[]) 

    { 

     int age[]={2,5,7,8,9}; 

     for(int i=0;i<=4;i++) 

     System.out.println("Element at index " + i +": " + age[i]); 

    } 

  } 

 

 

 



                                                                                                                                                     

20                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

Output 

 

1.4.3.1.2 Program to input 5 numbers in an array and display the numbers present in the 

array. 

import java.util.Scanner; 

public class SingleDimension2 

{ 

    public static void main(String args[]) 

    { 

        int a[]=new int[5], i; 

        Scanner sc=new Scanner(System.in); 

        System.out.println("Enter 5 numbers"); 

        for(i=0; i<5; i++) 

        { 

            a[i]=sc.nextInt(); 

        } 

        System.out.println("List of Elements in Array"); 

        for(i=0; i<5; i++) 

        { 

                System.out.print(a[i]+" "); 

        } 

    } 

} 

 

 



                                                                                                                                                     

21                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OUTPUT 

 

1.4.3.2 Multi-Dimensional Array 

➢ In Java, a multi-dimensional array is nothing but an array of arrays. A two-

dimensional array in Java is represented as an array of one-dimensional arrays of the 

same type. 

➢ It consists of rows and columns and looks like a table. A 2D array is also known as 

Matrix. 

1.4.3.2.1 Declaration Syntax of a Two-Dimensional Array in Java 

➢ Method 1:  

datatype variable_name[][] = new datatype[row_size][column_size]; 

 

➢ Method 2: 

datatype[][] variable_name = new datatype[row_size][column_size]; 

• Here row_size is the number of rows we want to create in a 2D array and, 

column_size is the number of columns in each row. 

➢ Example 1 

int a[][]=new int[3][3]; 

➢ Example 2 

int[][] a=new int[3][3]; 

➢ Once we declare the 2D Array, it will look like as shown in the picture below: 



                                                                                                                                                     

22                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 

➢ In the above image, you can see that we have created a 2D Array having 3 rows 

and 3 columns. We can call the above array as a 3x3 Matrix. 

➢ The first row and column always start with index 0. 2D array is used to store data 

in the form of a table. 

1.4.3.2.2 Declaration and Initialization of a Two-Dimensional Array in Java 

Example 1: 

int a[][]= new int[][] {{1,2,3}, {4,5,6}, {7,8,9}}; 

 

Example 2: 

int a[][]= {{15,27,36}, {41,52,64}, {79,87,93}}; 

 

  

 



                                                                                                                                                     

23                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

Example 3: 

      int a[][]= new int[3][3]; 

 

1.4.3.2.3 Example Program for Multi-Dimensional Array 

class Multidimension 

  { 

  public static void main(String arg[]) 

    { 

     int arraynum[][]={{2,5},{3,7},{4,5}}; 

     for(int a=0;a<3;a++) 

      { 

       for(int b=0;b<2;b++) 

         { 

          System.out.println(arraynum[a][b]); 

         } 

       } 

         } 

       } 

 

 

 



                                                                                                                                                     

24                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OUTPUT 

 

1.4.3.2.4 Program to input numbers in a 3x3 Matrix and display the numbers in a table 

format. 

Program 

import java.util.Scanner; 

public class Example 

{ 

    public static void main(String args[]) 

    { 

        int a[][]=new int[3][3]; 

        Scanner sc=new Scanner(System.in); 

        int r,c; 

        System.out.println("Enter 9 numbers"); 

        for(r=0; r<3; r++) 

        { 

            for(c=0; c<3; c++) 

            { 



                                                                                                                                                     

25                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

                a[r][c]=sc.nextInt(); 

            } 

        } 

        System.out.println("\nOutput"); 

        for(r=0; r<3; r++)   // this loop is for row 

        { 

            for(c=0; c<3; c++)  // this loop will print 3 numbers in each row 

            { 

                System.out.print(a[r][c]+" "); 

            } 

            System.out.println(); // break the line after printing the numbers in a row 

        } 

    } 

} 

OUTPUT 

 

 

 



                                                                                                                                                     

26                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OPERATORS  

➢ Operators are symbols that perform operations on variables and values. For example, 

+ is an operator used for addition, while * is also an operator used for multiplication. 

1.4.4 Types of Operators 

✓ Arithmetic Operators 

✓ Assignment Operators 

✓ Relational Operators 

✓ Logical Operators 

✓ Unary Operators 

✓ Bitwise Operators 

1.4.4.1 Java Arithmetic Operators 

❖ Arithmetic operators are used to perform arithmetic operations on variables 

and data.  

❖ For example, a + b; Here, the + operator is used to add two variables a and b. 

Similarly, there are various other arithmetic operators in Java. 

 



                                                                                                                                                     

27                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.4.4.2 Program to demonstrate the various Arithmetic Operations using JAVA 

Program 

class Arithmetic 

  { 

  public static void main(String args[]) 

    { 

     int x=10,y=5; 

     System.out.println("Addition="+(x+y));         //Perform Addition 

     System.out.println("Subtraction="+(x-y));      //Perform Subtraction 

     System.out.println("Multiplication="+(x*y));   //Perform Multiplication 

     System.out.println("Division="+(x/y));         //Perform Division 

     System.out.println("Modulo Division="+(x%y));  //Perform Modulo Division 

     System.out.println("Increment="+(x++));        //Perform Increment operation 

     System.out.println("Decrement="+(x--));        //Perform Decrement operation 

    } 

  } 

 Output 

      

1.4.4.3 Java Assignment Operators 

❖ Assignment operators are used in Java to assign values to variables. For example,  

int age; 

age = 5; 

❖ Here, = is the assignment operator. 5 is assigned to the variable age 

 

 

 



                                                                                                                                                     

28                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 

 

1.4.4.4 Program to demonstrate the various Assignment Operations using JAVA 

Program 

class Assignment { 

  public static void main(String[] args)  

{ 

    int x = 5; 

    System.out.println(x); 

    x+=3; 

    System.out.println(x);  

    x-=3; 

    System.out.println(x); 

    x*=3; 

    System.out.println(x); 

    x/=3; 



                                                                                                                                                     

29                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

    System.out.println(x); 

    x%=3; 

    System.out.println(x); 

    x>>=3; 

    System.out.println(x); 

    x<<=3; 

    System.out.println(x); 

  } 

} 

OUTPUT 

 

1.5.1.5 Java Left Shift Operator 

• The Java left shift operator << is used to shift all the bits in a value to the left side 

of a specified number of times. 

1.5.1.5.1 Java Left Shift Operator Example 

class OperatorExample 

 {   

  public static void main(String args[]){   

  System.out.println(10<<2);//10*2^2=10*4=40   

  System.out.println(10<<3);//10*2^3=10*8=80   

  System.out.println(20<<2);//20*2^2=20*4=80   



                                                                                                                                                     

30                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

  System.out.println(15<<4);//15*2^4=15*16=240   

 } 

}   

OUTPUT 

 

1.4.4.5 Java Right Shift Operator 

❖ The Java right shift operator >> is used to move the value of the left operand to 

right by the number of bits specified by the right operand. 

1.5.1.5.1 Java Right Shift Operator Example 

class OperatorExample1 

  {   

   public static void main(String args[]) 

      {   

       System.out.println(10>>2);  //10/2^2=10/4=2   

       System.out.println(20>>2);  //20/2^2=20/4=5   

       System.out.println(20>>3);  //20/2^3=20/8=2   

      } 

  }   

Output 

 

 

 

 

 



                                                                                                                                                     

31                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.4.5 Java Relational Operators  

❖ Relational operators are used to check the relationship between two operands. For 

example, a < b; Here, < operator is the relational operator. It checks if a is less than 

b or not. It returns either true or false. 

 

1.4.5.1 Program to demonstrate the various Relational Operators using JAVA 

class Comparison   

  { 

  public static void main(String[] args)  

   { 

    int x = 5; 

    int y = 5; 

    System.out.println(x == y); // returns false because 5 is not equal to 3 

    System.out.println(x != y); // returns true because 5 is not equal to 3 

    System.out.println(x > y); // returns true because 5 is greater than 3 

    System.out.println(x < y); // returns false because 5 is not less than 3 

    System.out.println(x >= y); // returns true because 5 is greater, or equal, to 3 

    System.out.println(x <= y); // returns false because 5 is neither less than or equal to 3 

  } 

} 

 



                                                                                                                                                     

32                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

Output 

 

1.4.6 Java Logical Operators 

❖ Logical operators are used to determine the logic between variables or values: 

 

1.4.6.1 Program to demonstrate the various logical Operators using JAVA 

class Logical 

   { 

    public static void main(String[] args)  

      { 

       int x = 5; 

       System.out.println(x > 3 && x < 10);     

       System.out.println(x > 3 || x < 4);      

       System.out.println(!(x > 3 && x < 10));  

       } 

   } 

Output 

 



                                                                                                                                                     

33                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.4.7 Java Unary Operators 

➢ Unary operators are used with only one operand. For example, ++ is a unary operator 

that increases the value of a variable by 1. That is, ++5 will return 6. 

 

1.4.7.1 Example program to illustrate the use of Unary Operator 

class Main  

  { 

  public static void main(String[] args)  

    { 

    // declare variables 

    int a = 12, b = 12; 

    int result1, result2; 

    // original value 

    System.out.println("Value of a: " + a); 

    // increment operator 

    result1 = ++a; 

    System.out.println("After increment: " + result1); 

    System.out.println("Value of b: " + b); 

    // decrement operator 

    result2 = --b; 

    System.out.println("After decrement: " + result2); 

    } 

} 



                                                                                                                                                     

34                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

Output 

 

1.5 CONTROL STATEMENTS 

➢ A programming language uses control statements to control the flow of execution of a 

program based on certain conditions. It is one of the fundamental features of Java, 

which provides a smooth flow of program. 

➢ Java provides three types of control flow statements. 

1. Decision Making statements 

o if statements 

o if else 

o else if 

o switch statement 

2. Loop statements 

o do while loop 

o while loop 

o for loop 

o for-each loop 

3. Jump statements 

o break statement 

o continue statement 

 

 

 

 



                                                                                                                                                     

35                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.5.1 Decision Making Statements 

1.6.1.1 Simple if Statement 

➢ The Java if statement tests the condition. It executes the if block if condition is true. 

1.5.1.1.1 Syntax: 

if(condition) 

{   

//code to be executed   

}   

1.5.1.1.2 Example Program 

class If 

  { 

  public static void main(String arg[]) 

    { 

     int a=10,b=5; 

     if(a>b) 

       { 

        System.out.println("The value a=10 is greater" ); 

       } 

     } 

   } 

Output 

 

1.6.1.2 If-else Statement 

➢ The Java if-else statement also tests the condition. It executes the if block if condition 

is true otherwise else block is executed. 

1.6.1.2.1 Syntax 

if(condition) 

{   

//code if condition is true   

} 

else 

{   



                                                                                                                                                     

36                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

//code if condition is false   

}   

1.6.1.2.2 Program using if-else statement in JAVA 

class Ifelse 

  { 

     public static void main(String ab[]) 

       { 

        int a=16,b=10; 

        if(a>b) 

       { 

        System.out.println("The value a is greater"); 

       } 

     else 

       System.out.println("The value b is greater"); 

      } 

    } 

Output 

 

1.6.1.3 Else if Statement 

➢ The if-else-if ladder statement executes one condition from multiple statements. 

1.6.1.3.1 Syntax: 

if(condition1){   

//code to be executed if condition1 is true   

}else if(condition2){   

//code to be executed if condition2 is true   

}   

else if(condition3){   

//code to be executed if condition3 is true   

}   



                                                                                                                                                     

37                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

...   

else{   

//code to be executed if all the conditions are false   

}   

1.6.1.3.2 Example program using else-if statement 

class Elseif 

  { 

  public static void main(String arg[]) 

    { 

     int a=6,b=5,c=7; 

     if(a>b && a>c) 

       { 

        System.out.println("The value a is greater"); 

       } 

     else if(b>a && b>c) 

       { 

       System.out.println("The value b is greater"); 

       } 

     else 

        { 

       System.out.println("The value c is greater"); 

        } 

     } 

   } 

OUTPUT 

 



                                                                                                                                                     

38                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.6.1.4 Nested if statement 

➢ The nested if statement represents the if block within another if block. Here, the inner 

if block condition executes only when outer if block condition is true. 

1.6.1.4.1 Syntax 

if(condition) 

{     

     //code to be executed     

          if(condition) 

   {   

             //code to be executed     

    }     

}   

 

1.6.1.4.2 Java Program to demonstrate the use of Nested If Statement.   

        class JavaNestedIfExample  

{     

  public static void main(String[] args) 

     {     

    //Creating two variables for age and weight   

       int age=20;   

       int weight=80;     

    //applying condition on age and weight   

       if(age>=18) 

        {     

          if(weight>50) 

            {   

            System.out.println("You are eligible to donate blood");   

            }     

        }     

                 } 

              }   



                                                                                                                                                     

39                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OUTPUT 

 

1.6.1.5 JAVA switch statement 

➢ The Java switch statement executes one statement from multiple conditions. The 

switch statement tests the equality of a variable against multiple values. 

1.6.1.5.1 Syntax 

switch(expression){     

case value1:     

 //code to be executed;     

 break;  //optional   

case value2:     

 //code to be executed;     

break;  //optional   

......         

default:      

  code to be executed if all cases are not matched;   

}     

1.6.1.5.2 JAVA Program using Switch 

class Switchcase { 

    public static void main(String[] args) { 

        int week = 2; 

        String day; 

        // switch statement to check day 

        switch (week) { 

            case 1: 

                day = "Sunday"; 

                break; 

            case 2: 



                                                                                                                                                     

40                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

                day = "Monday"; 

                break; 

            case 3: 

                day = "Tuesday"; 

                break; 

            // match the value of week 

            case 4: 

                day = "Wednesday"; 

                break; 

            case 5: 

                day = "Thursday"; 

                break; 

            case 6: 

                day = "Friday"; 

                break; 

            case 7: 

                day = "Saturday"; 

                break; 

            default: 

                day = "Invalid day"; 

                break; 

        } 

        System.out.println("The day is " + day); 

    } 

} 

OUTPUT 

 

 



                                                                                                                                                     

41                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.6.2 JAVA Looping Statements 

➢ Loops are used to repeat a block of code. For example, if you want to show a 

message 100 times, then rather than typing the same code 100 times, you can use a 

loop. 

➢ JAVA Looping statement types 

• For loop 

• While loop 

• Do-While loop 

• for-each loop 

1.6.2.1 For Statement 

➢ Java for loop is used to run a block of code for a certain number of times. 

1.6.2.1.1 Syntax 

for(initialization; condition; increment/decrement)  

{ 

    // body of the loop 

} 

1.6.2.1.2 Simple Program using For Loop 

class For 

   { 

    public static void main(String arg[]) 

       { 

        int i; 

        for(i=0;i<5;i++) 

        System.out.println(i); 

       } 

                } 

 

 



                                                                                                                                                     

42                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OUTPUT 

 

 

1.6.2.2 While Statement 

➢ Java while loop is a control flow statement that allows code to be executed repeatedly 

based on a given Boolean condition. 

➢ The while loop is considered as a repeating if statement. 

➢ If the number of iterations is not fixed, it is recommended to use the while loop. 

1.6.2.2.1 Syntax 

while (condition) 

{     

//code to be executed    

increment / decrement statement   

}     

1.6.2.2.2 Example program using While 

class While 

  { 

   public static void main(String ab[]) 

    { 

   int i; 

   i=5; 

   while(i>0) 

     { 

      System.out.println("i="+i); 



                                                                                                                                                     

43                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

      i--; 

     } 

   } 

  } 

1.6.2.2.3 OUTPUT 

 

1.6.2.3 Java do-while Loop 

➢ Java do-while loop is used to execute a block of statements continuously until the given 

condition is true. 

➢ The loop will always be executed at least once, even if the condition is false, because the 

code block is executed before the condition is tested: 

1.6.2.3.1 Syntax 

do  

{ 

 // code block to be executed 

} 

while (condition); 

1.6.2.3.2 Example Program using Do-while loop 

class Dowhile 

    { 

     public static void main(String ab[]) 

    { 

     int i; 

     i=5; 

     do 

      { 

      System.out.println("i="+i); 



                                                                                                                                                     

44                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

       i--; 

       }while(i>=0); 

    } 

  } 

1.6.2.3.3 Output 

 

1.6.2.4 Java for-each Loop 

➢ In Java, the for-each loop is used to iterate through elements of arrays and collections 

➢ It is also known as the enhanced for loop. 

1.6.2.4.1 The syntax of the Java for-each loop is: 

for(dataType item : array)  

{ 

    ... 

} 

Here, 

array - an array or a collection 

item - each item of array/collection is assigned to this variable 

dataType - the data type of the array/collection 

1.6.2.4.2 Example Program: Print Array Elements 

class Main { 

  public static void main(String[] args) {  

    // create an array 

    int[] numbers = {3, 9, 5, -5}; 

    // for each loop  

    for (int number: numbers) { 

      System.out.println(number); 

    } 

  } 



                                                                                                                                                     

45                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

} 

1.6.2.4.3 Output 

 

 

1.6.3 Jump Statements 

➢ Jumping statements are control statements that transfer execution control from one 

point to another point in the program. 

➢ There are two Jump statements that are provided in the Java programming 

language: 

✓ Break statement. 

✓ Continue statement. 

1.6.3.1 Break Statement 

➢ The break statement in Java terminates the loop immediately, and the control of the 

program moves to the next statement following the loop. 

1.6.3.1.1 Syntax for Break Statement 

➢  break; 

1.6.3.1.2 Simple Program using Break Statement 

   class Break 

     { 

       public static void main(String ar[]) 

      { 

      int i; 



                                                                                                                                                     

46                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

      for(i=1;i<=5;i++) 

         { 

        if(i==3) 

          break; 

          System.out.println("i="+i); 

          } 

     } 

  } 

OUTPUT 

 

1.6.3.2 Continue Statement 

➢ The continue statement is used when we want to skip a particular condition and 

continue the rest execution. 

1.6.3.2.1 Syntax 

➢ continue; 

1.6.3.2.2 Simple Program using Continue Statement 

class Continue 

    { 

     public static void main(String ar[]) 

     { 

      int i; 

      for(i=1;i<=5;i++) 



                                                                                                                                                     

47                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

         { 

        if(i==3) 

          continue; 

          System.out.println("i="+i); 

             } 

         } 

       } 

OUTPUT 

      

1.9 PROGRAMMING STRUCTURES IN JAVA 

➢ Java is an object-oriented programming, platform-independent, and secure 

programming language that makes it popular. Using the Java programming language, 

we can develop a wide variety of applications. 

 

Fig: Structure of a JAVA Program 

 



                                                                                                                                                     

48                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.9.1 Documentation Section 

➢ It includes basic information about a Java program. The information includes the 

author's name, date of creation, version, program name, company name, and 

description of the program. 

➢ It improves the readability of the program. Whatever we write in the documentation 

section, the Java compiler ignores the statements during the execution of the program. 

➢ To write the statements in the documentation section, we use comments. The 

comments may be single-line, multi-line, and documentation comments. 

➢ Single-line Comment:  

• It starts with a pair of forwarding slash (//). For example: //First Java Program   

➢ Multi-line Comment:  

• It starts with a /* and ends with */. We write between these two symbols. For 

example: 

/*It is an example of  

multiline comment*/   

➢ Documentation Comment:  

• It starts with the delimiter (/**) and ends with */. For example: 

/**It is an example of documentation comment*/   

1.9.2 Package Declaration 

➢ The package declaration is optional. It is placed just after the documentation section. 

➢ we declare the package name in which the class is placed. 

➢ There can be only one package statement in a Java program. 

➢ It must be defined before any class and interface declaration. 

➢ The keyword package is used to declare the package name. 

➢ Syntax 

• package package_name; 

➢ Example: 

• package student; //where student is the package name   

• This statement declares that all the classes and interfaces defined in this source 

file are a part of the student package. 



                                                                                                                                                     

49                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.9.3 Import Statement 

➢ The package contains the many predefined classes and interfaces. If we want to use 

any class of a particular package, we need to import that class. 

➢ The import statement represents the class stored in the other package. 

▪ import java.util.Scanner; //it imports the Scanner class only   

▪ import java.util.*; //it imports all the class of the java.util package 

1.9.4 Interface Section 

➢ We use the interface keyword to create an interface. 

➢ It contains only constants and method declarations. 

➢ It cannot be instantiated.  

➢ We can use interface in classes by using the implements keyword. 

➢ Example 

interface car   

{   

void start();   

void stop();   

} 

1.9.5 Class Definition 

➢ Without the class we cannot create any Java program. A Java program may conation 

more than one class definition. 

➢ We use the class keyword to define the class. The class is a blueprint of a Java program.  

➢ It contains information about user-defined methods, variables, and constants. Every 

Java program has at least one class that contains the main() method. 

➢ Example 

class Student //class definition   

{   

} 

 

 



                                                                                                                                                     

50                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.9.6 Class Variables and Constants 

➢ In a Java program, the variables and constants are defined just after the class definition.  

➢ It defines the life of the variables. 

➢ Example 

class Student //class definition   

{   

String sname;  //variable   

int id;    

double percentage;    

} 

1.9.7 Main Method Class 

➢ Every Java stand-alone program requires the main method as the starting point of the 

program. This is an essential part of a Java program. 

➢ There may be many classes in a Java program, and only one class defines the main 

method. 

➢ When the main method is declared public, it means that it can be used outside of this 

class as well. 

➢ The word static means that we want to access a method without making its objects. As 

we call the main method without creating any objects. 

➢ The word void indicates that it does not return any value. The main is declared as void 

because it does not return any value. 

➢ Main is the method, which is an essential part of any Java program. 

1.9.7.1 String[] args 

➢ It is an array where each element is a string, which is named as args. If you run the Java 

code through a console, you can pass the input parameter.  

➢ The main() takes it as an input. 

public static void main(String args[])   

{   

} 



                                                                                                                                                     

51                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 

1.10 Defining classes in Java 

➢ Java provides a reserved keyword class to define a class. The keyword must be 

followed by the class name. Inside the class, we declare methods and variables. 

➢ In general, class declaration includes the following in the order as it appears:  

• Modifiers: A class can be public or has default access. 

• class keyword: The class keyword is used to create a class. 

• Class name: The name must begin with an initial letter (capitalized by 

convention). 

• Superclass (if any): The name of the class's parent (superclass), if any, 

preceded by the keyword extends. A class can only extend (subclass) one 

parent. 

• Interfaces (if any): A comma-separated list of interfaces implemented by the 

class, if any, preceded by the keyword implements. A class can implement more 

than one interface. 

• Body: The class body surrounded by braces, { } 

1.10.1 Syntax for Defining a Class 

class class_name    

{   

// member variables    

// class methods    

}   

1.10.2 Example Program using Classes, Objects and Methods 

import java.util.Scanner; 

class Person 

   { 

     int age; 

     String name; 



                                                                                                                                                     

52                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

     Scanner sc=new Scanner(System.in);  

     void read() 

         { 

          System.out.println("Enter age"); 

          age=sc.nextInt(); 

          System.out.println("Enter name"); 

          name=sc.next(); 

         } 

     void display() 

         { 

          System.out.println("age="+age); 

          System.out.println("name="+name); 

          } 

      public static void main(String args[]) 

       { 

        Person P=new Person(); 

        P.read(); 

        P.display(); 

      } 

     } 

OUTPUT 

.  

 



                                                                                                                                                     

53                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.11 JAVA CONSTRUCTORS 

➢ A constructor in Java is a special method that is used to initialize objects. 

The constructor is called when an object of a class is created. 

1.11.1 Types of Constructors 

➢ Types of Constructors 

• Default Constructor 

• Parametrized Constructor 

1.11.1.1 Default Constructor 

➢ A constructor is called "Default Constructor" when it doesn't have any parameter. 

➢ Syntax of default constructor: 

Class Classname 

   { 

   Classname()   //Default Constructor 

        { 

        Statement 1 

        Statement 2 

        -------------- 

         } 

   } 

1.11.1.2 Example of default constructor 

class Car 

   {   

    Car()    //creating a default constructor   

    { 

     System.out.println("NAME OF THE CAR"); 

     }   

     public static void main(String args[]) 

     {   



                                                                                                                                                     

54                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

    

   Car c=new Car();   //calling a default constructor   

   }   

   }   

OUTPUT 

 

1.11.1.3 PARAMETRIZED CONSTRUCTOR 

➢ A constructor having a specific number of parameters(arguments) is called a 

parameterized constructor. 

➢ The parameterized constructor is used to provide different values to the objects, you 

can also provide the same values. 

1.11.1.4 Example Program using Parametrized Constructor 

class Param 

  { 

   int a; 

   Param(int b) 

     { 

      a=b; 

      System.out.println(a); 

      } 

 public static void main(String args[]) 

   { 

    Param P=new Param(10); 

   } 

} 

 



                                                                                                                                                     

55                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OUTPUT 

 

1.11.2 CONSTRUCTOR OVERLOADING 

➢ The constructor overloading can be defined as the concept of having more than one 

constructor with different parameters so that every constructor can perform a different task. 

1.11.2.1 Example Program using Constructor Overloading 

class Student5 

    {   

    int id;   

    String name;   

    int age;   

    //creating two arg constructor   

    Student5(int i,String n) 

   {   

    id = i;   

    name = n;   

    }   

    //creating three arg constructor   

    Student5(int i,String n,int a) 

    {   

    id = i;   

    name = n;   

    age=a;   

    }   

    void display() 

       { 

       System.out.println(id+" "+name+" "); 



                                                                                                                                                     

56                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

       } 

    void display1() 

       { 

       System.out.println(id+" "+name+" "+age); 

       } 

    public static void main(String args[]) 

     {   

    Student5 s1 = new Student5(111,"Karan");   

    Student5 s2 = new Student5(222,"Aryan",25);   

    s1.display();   

    s2.display1();   

   }  

 }   

OUTPUT 

 

1.11.3 Properties of Constructor 

o Constructors name must be similar to that of the class name inside which it resides. 

o Constructors are automatically called when an object is created. 

o Constructors cannot be private. 

o A constructor can be overloaded. 

o Constructors cannot return a value. 

o Constructors do not have a return type; not even void. 

o An interface cannot have the constructor. 

o A constructor cannot be abstract, static, final, native, strictfp, or synchronized 

o An abstract class can have the constructor. 

 

 



                                                                                                                                                     

57                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.12 METHODS 

➢ A method is a block of code which only runs when it is called. You can pass data, known 

as parameters, into a method. Methods are used to perform certain actions, and they are 

also known as functions. 

➢ It is used to achieve the reusability of code. 

1.12.1 Types of Methods in JAVA 

➢ In Java, there are two types of methods: 

• User-defined Methods: We can create our own method based on our 

requirements. 

• Standard Library Methods: These are built-in methods in Java that are 

available to use. 

1.12.1.1 User-defined Methods: 

➢ We can create our own method based on our requirements. 

➢ The syntax to declare a method is: 

returnType methodName()  

{ 

  // method body 

} 

➢ Here,  

returnType - It specifies what type of value a method returns For example if a method 

has an int return type then it returns an integer value. 

If the method does not return a value, its return type is void. 

methodName - It is an identifier that is used to refer to the particular method in a 

program. 

method body - It includes the programming statements that are used to perform some 

tasks. The method body is enclosed inside the curly braces { }. 

 

 

 



                                                                                                                                                     

58                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

Example 

int addNumbers()  

{ 

// code 

} 

➢ In the above example, the name of the method is adddNumbers(). The return type is 

int 

➢ the complete syntax of declaring a method is 

modifier static returnType nameOfMethod (parameter1, parameter2, ...)  

{ 

  // method body 

} 

➢ Here,  

• modifier - It defines access types whether the method is public, private, and so 

on. To learn more, visit Java Access Specifier. 

• static - If we use the static keyword, it can be accessed without creating objects. 

✓ For example, the sqrt() method of standard Math class is static. Hence, 

we can directly call Math.sqrt() without creating an instance of Math 

class. 

• parameter1/parameter2 - These are values passed to a method. We can pass 

any number of arguments to a method. 

1.12.1.2 Calling a Method in Java 

➢ In the above example, we have declared a method named addNumbers(). Now, to use 

the method, we need to call it. 

➢ // calls the method 

   addNumbers(); 



                                                                                                                                                     

59                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 

1.12.1.3 Method with no parameter and no return type 

    public class MethodExample  

    { 

    public void add()  

    { 

    System.out.println("Addition method"); 

     } 

    public static void main(String[] args) { 

    MethodExample m = new MethodExample(); 

    m.add(); 

    } 

   } 

OUTPUT 

 

1.12.1.4 Method with parameters but no return type 

              public class Subtraction { 

              public void difference(int x, int y)  

              { 

              int diff = x - y; 

              System.out.println("Difference is: " + diff); 



                                                                                                                                                     

60                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

              } 

              public static void main(String[] args) { 

              Subtraction s = new Subtraction(); 

              s.difference(10, 4); 

              } 

             } 

OUTPUT 

1.12.1.5 Method with parameter and return type 

public class Compare  

{ 

 int max; 

 public int greaterNumber(int x, int y) { 

 if(x > y) 

      max = x; 

    else 

      max = y; 

    return max; 

  } 

  public static void main(String[] args) { 

    Compare c = new Compare(); 

    int value = c.greaterNumber(47, 29); 

    System.out.println("Greater value is: " + value); 

  } 

} 



                                                                                                                                                     

61                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OUTPUT 

 

➢ In this example, the method greaterNumber has both parameters and return value. Hence when 

calling the method, we should pass arguments as well as have a variable to assign the return 

value from the method.  

➢ In this case, x and y values have 47 and 29 respectively and return the variable max from the 

method. While invoking the method, we have the variable value that receives the output of this 

method. 

1.12.1.6 Static Java Method 

➢ Static methods are the methods in Java that can be called without creating an object of 

class. They are referenced by the class name itself or reference to the Object of that class.   

1.12.1.6.1 Example Program using Static Java Method 

 public class StaticMethod 

 { 

  public static void add()  

 { 

  System.out.println("Addition method"); 

  } 

  public static void main(String[] args) { 

  add(); 

  } 

} 

OUTPUT 

 

 



                                                                                                                                                     

62                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.12.1.7 Instance Methods 

➢ Methods which are non-static and that belongs to a class is called an instance method. 

These methods require an object or class instance to make a call to the function.  

1.12.1.7.1 Example Program using Instance Method 

public class MethodExample  

 { 

  public static void add()    //Static method 

  { 

    System.out.println("Addition method"); 

  } 

  public void subtract()     //Instance method 

  { 

    System.out.println("Subtraction method"); 

  } 

  public static void main(String[] args)  

  { 

    MethodExample m = new MethodExample();       //Invoking a static method 

    add(); 

    m.subtract();      //Invoking an instance method 

  } 

} 

OUTPUT 

 

 

 

 



                                                                                                                                                     

63                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.12.2 Predefined Method 

➢ In Java, predefined methods are the method that is already defined in the Java class 

libraries is known as predefined methods. It is also known as the standard library method 

or built-in method. 

➢ We can directly use these methods just by calling them in the program at any point. 

➢ Some pre-defined methods are length(), equals(), compareTo(), sqrt(), etc. 

➢ Each and every predefined method is defined inside a class. Such as print() method is 

defined in the java.io.PrintStream class. It prints the statement that we write inside the 

method. For example, print("Java"), it prints Java on the console. 

1.12.2.1 Example Program for Predefined method in JAVA 

public class Demo    

{   

public static void main(String[] args)    

{   

// using the max() method of Math class   

System.out.print("The maximum number is: " + Math.max(9,7));   

}   

}   

OUTPUT 

 

➢ In the above example, we have used three predefined methods main(), print(), and max(). We 

have used these methods directly without declaration because they are predefined. 

➢ The print() method is a method of PrintStream class that prints the result on the console. 

➢ The max() method is a method of the Math class that returns the greater of two numbers. 

 

 

 



                                                                                                                                                     

64                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.13 Access specifiers 

➢ Access specifiers in Java helps to restrict the scope of a class, constructor, variable, method 

or data member. 

➢ Access specifiers can be specified separately for a class, constructors, fields, and methods. 

➢ They are also referred as Java Access Modifiers 

1.13.1 Types of Access Modifier 

➢ Default Access Modifier 

➢ Private Access Modifier 

➢ Public Access Modifier 

➢ Protected Access Modifier 

1.13.1.1 Default Access Modifier 

➢ When no access modifier is specified for a particular class, method or a data member, 

it is said to be having the default access modifier. 

1.13.1.1.1 Example Program using Default Access 

class DefaultEx 

{  

 int x=50; // default data 

} 

class Default 

{  

 public static void main(String[] args)  

 {  

  DefaultEx  a1=new DefaultEx();  

  System.out.println(a1.x); // default data x is accessible outside the class  

 } 

} 

OUTPUT 

 

 



                                                                                                                                                     

65                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.13.1.2 Private Access Modifier 

➢ The methods or data members that are declared as private are only accessible within 

the class in which they are declared. 

1.13.1.2.1 Example Program using Private Access Modifier 

class PrivateEx 

{  

 private int x=5; // private data  

 public int y=10; // public data  

} 

public class PrivateExample 

{  

 public static void main(String[] args)  

 {  

         PrivateEx obj1=new PrivateEx();  

 System.out.println(obj1.y); // public data y is accessible by a non-member  

 System.out.println(obj1.x); //Error: x has private access in PrivateEx  

 } 

} 

OUTPUT 

 

1.13.1.3 Public Access Modifier 

➢ The public access modifier is specified using the keyword public.  

➢ Classes, methods or data members which are declared as public are accessible 

anywhere throughout the program. There is no restriction on the scope of public data 

members. 

 

 



                                                                                                                                                     

66                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.13.1.3.1 Example Program using Public Access Modifier 

class PublicEx 

{  

 public int no=10; 

     public void dis() 

        { 

         System.out.println(no); 

        } 

} 

public class PublicExample 

{  

 public static void main(String[] args)  

 {  

  PublicEx obj=new PublicEx();  

  obj.dis(); 

 } 

} 

OUTPUT 

 

1.13.1.4 Protected Access Modifier 

➢ The protected access modifier is specified using the keyword protected. 

➢ Protected members can be accessed only in the child or derived classes. 

 

 

 

 



                                                                                                                                                     

67                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.13.1.3.1 Example Program using Protected Access Modifier 

class Base   //parent class 

{  

 protected void show() 

 {  

  System.out.println("Welcome to Java World");  

 } 

} 

class Protect extends Base  //child class 

{  

 public static void main(String[] args)  

 {  

  Protect obj=new Protect();  

  obj.show();   //fncall using object 

 } 

} 

 

OUTPUT 

 

 

1.13.2 Access Rights of Different Access modifiers 

 

 



                                                                                                                                                     

68                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 

1.14 STATIC MEMBERS 

➢ When a member is declared static, it can be accessed before any objects of its class are 

created, and without reference to any object. 

➢ Variables and methods declared using keyword static are called static members of a 

class. 

1.14.1 Static Method 

➢ Static method in Java is a method which belongs to the class and not to the object.  

➢ A static method can access only static data. It is a method which belongs to the class and 

not to the object(instance).  

➢ A static method can access only static data. It cannot access non-static data (instance 

variables). 

➢ A static method can be accessed directly by the class name and doesn’t need any object  

➢ A static method cannot refer to “this” or “super” keywords in anyway. 

1.14.1.1 Syntax 

<class-name>.<method-name> 

1.14.2 Static variables 

➢ When a variable is declared as static, then a single copy of the variable is created and 

shared among all objects at the class level.  

➢ Static variables are, essentially, global variables. All instances of the class share the 

same static variable. 

➢ A static variable can be accessed directly by the class name and doesn’t need any object 

1.14.2.1 Syntax:  

<class-name>.<variable-name> 

1.14.3 Static Block 

➢ A static block is a set of instructions that will be executed only once when a class is 

loaded into memory. A static block is also called a static initialization block. 



                                                                                                                                                     

69                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.14.3.1 Syntax 

class Test 

{ 

 static  

{ 

 //Code goes here 

 } 

} 

1.14.4 Example Program to illustrate the use of Static Variables, Methods and Static Blocks 

class Staticdemo 

{ 

    static int a=10;  //STATIC VARIABLE 

    static void display()  //STATIC METHOD 

         { 

        System.out.println("Static Method"); 

         } 

    static  //STATIC BLOCK 

        { 

        System.out.println("Static Block"); 

        }   

      public static void main(String args[]) 

      { 

       Staticdemo obj=new Staticdemo(); 

       System.out.println(obj.a); 

       display(); 



                                                                                                                                                     

70                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

       } 

} 

Output 

 

1.15 JAVA DOC COMMENTS 

➢ Javadoc is a tool that generates Java code documentation in the HTML format from 

Java source code. The documentation is formed from Javadoc comments that are 

usually placed above classes, methods, or fields. 

➢ Following is a simple example where the lines inside /*….*/ are Java multi -line 

comments. Similarly, the line which proceeds // is Java single-line comment. 

Example 1 

/** 

* The HelloWorld program implements an application that 

* simply displays "Hello World!" to the standard output. 

* @author  Bastin 

* @version 1.0 

* @since   2014-03-31  

*/ 

public class HelloWorld  

 { 

   public static void main(String[] args)  

       { 

      // Prints Hello, World! on standard output. 

      System.out.println("Hello World!"); 

        } 



                                                                                                                                                     

71                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

} 

➢ You can include required HTML tags inside the description part. For instance, the following 

example makes use of <h1>....</h1> for heading and <p> has been used for creating paragraph 

break. 

Example 2 

/** 

* <h1>Hello, World!</h1> 

* The HelloWorld program implements an application that 

* simply displays "Hello World!" to the standard output. 

* <p> 

* Giving proper comments in your program makes it more 

* user friendly and it is assumed as a high quality code. 

* @author  Bastin 

* @version 1.0 

* @since   2014-03-31  

*/ 

public class HelloWorld { 

   public static void main(String[] args) { 

      // Prints Hello, World! on standard output. 

      System.out.println("Hello World!"); 

   } 

} 

Output : Hello World 



                                                                                                                                                     

72                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

1.15.1 The javadoc Tags 

o The javadoc tool recognizes the following tags 

Tag Description Syntax 

@author Adds the author of a class. @author name-text 

{@code} Displays text in code font without interpreting the text 

as HTML markup or nested javadoc tags. 
{@code text} 

{@docRoot} Represents the relative path to the generated 
document's root directory from any generated page. 

{@docRoot} 

@deprecated Adds a comment indicating that this API should no 
longer be used. 

@deprecated deprecatedtext 

@exception Adds a Throws subheading to the generated 

documentation, with the classname and description 
text. 

@exception class-name 

description 

{@inheritDoc} Inherits a comment from the nearest inheritable class 
or implementable interface. 

Inherits a comment from the 
immediate surperclass. 

{@link} Inserts an in-line link with the visible text label that 
points to the documentation for the specified package, 
class, or member name of a referenced class. 

{@link 
package.class#member label} 

{@linkplain} Identical to {@link}, except the link's label is displayed 
in plain text than code font. 

{@linkplain 
package.class#member label} 

@param Adds a parameter with the specified parameter-name 
followed by the specified description to the 
"Parameters" section. 

@param parameter-name 
description 

@return Adds a "Returns" section with the description text. @return description 

@see Adds a "See Also" heading with a link or text entry that 
points to reference. 

@see reference 

@serial Used in the doc comment for a default serializable 
field. 

@serial field-description | 
include | exclude 

@serialData Documents the data written by the writeObject( ) or 
writeExternal( ) methods. 

@serialData data-description 



                                                                                                                                                     

73                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

@serialField 
Documents an ObjectStreamField component. 

@serialField field-name field-
type field-description 

@since Adds a "Since" heading with the specified since-text to 
the generated documentation. 

@since release 

@throws The @throws and @exception tags are synonyms. @throws class-name 
description 

{@value} When {@value} is used in the doc comment of a static 
field, it displays the value of that constant. 

{@value package.class#field} 

@version Adds a "Version" subheading with the specified 
version-text to the generated docs when the -version 
option is used. 

@version version-text 

 

Example 3 

import java.io.*;    

/**  

 * <h2> Calculation of numbers </h2>  

 * This program implements an application  

 * to perform operation such as addition of numbers   

 * and print the result   

 * <p>  

 * <b>Note:</b> Comments make the code readable and   

 * easy to understand.  

 *   

 * @author Anurati   

 * @version 16.0  

 * @since 2021-07-06  



                                                                                                                                                     

74                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

 */   

 public class Calculate{   

    /**  

     * This method calculates the summation of two integers.  

     * @param input1 This is the first parameter to sum() method  

     * @param input2 This is the second parameter to the sum() method.  

     * @return int This returns the addition of input1 and input2  

     */  

     public int sum(int input1, int input2){   

        return input1 + input2;   

    }   

    /**  

    * This is the main method uses of sum() method.  

    * @param args Unused  

    * @see IOException   

    */     

    public static void main(String[] args) {   

        Calculate obj = new Calculate();   

        int result = obj.sum(40, 20);   

        System.out.println("Addition of numbers: " + result);   

    }     

 }    



                                                                                                                                                     

75                                                                                                                                          PREPARED BY 
                                                                                                                                           BASTIN ROGERS C, AP/CSE 

 

CS3391-OOP                                                                                       STELLA MARY’S COLLEGE OF ENGG  

OUTPUT 

 



 

 pg. 1                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

INHERITANCE, PACKAGES, AND INTERFACES 

Overloading Methods – Objects as Parameters – Returning Objects –

Static, Nested and Inner Classes. Inheritance: Basics– Types of 

Inheritance -Super keyword -Method Overriding – Dynamic Method 

Dispatch –Abstract Classes – final with Inheritance. Packages and 

Interfaces: Packages – Packages and Member Access –Importing 

Packages – Interfaces. 

2.1 OVERLOADING METHODS 

2.1.1 What is Method Overloading? 

➢ Method overloading in java is a feature that allows a class to have more than one 

method with the same name, but with different parameters. 

2.1.2 Method Overloading Types 

➢ Overloading by changing the number of parameters. 

➢ Method Overloading by changing the data type of parameters 

2.1.2.1 Overloading by changing the number of parameters. 

➢ This example shows how method overloading is done by having different number of 

parameters. In this example, we have two methods with the same name but their 

parameters count is different. 

➢ First disp() method has one parameter (char) while the second method disp() has two 

parameters (char, int). 

➢ Example Program 

class DisplayOverloading 

{ 

    public void disp(char c) 

    { 

         System.out.println(c); 

    } 



 

 pg. 2                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

    public void disp(char c, int num)   

    { 

         System.out.println(c + " "+num); 

    } 

} 

class Sample 

{ 

   public static void main(String args[]) 

   { 

       DisplayOverloading obj = new DisplayOverloading(); 

       obj.disp('a'); 

       obj.disp('a',10); 

   } 

} 

OUTPUT 

 

2.1.2.2 Method Overloading by changing the data type of parameters 

➢ In this example, method disp() is overloaded based on the data type of parameters . 

➢ We have two methods with the name disp() and number of parameters is same but the 

type of parameters is different.  

➢ The first method has one char parameter while the second method has one int 

parameter. 

 

 



 

 pg. 3                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

➢ Example Program 

class DisplayOverloading2 

{ 

    public void disp(char c) 

    { 

        System.out.println(c); 

    } 

    public void disp(int c) 

    { 

       System.out.println(c ); 

    } 

} 

class Sample2 

{ 

    public static void main(String args[]) 

    { 

        DisplayOverloading2 obj = new DisplayOverloading2(); 

        obj.disp('a'); 

        obj.disp(5); 

    } 

} 

OUTPUT 

 

 

 



 

 pg. 4                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

2.1.3 Example Program to calculate area of Square, Circle, Rectangle and Triangle using 

Method Overloading 

class Area 

{ 

    void area(float x) 

    { 

        System.out.println("the area of the square is "+Math.pow(x, 2)+" sq units");  

    } 

    void area(float x, float y) 

    { 

        System.out.println("the area of the rectangle is "+x*y+" sq units"); 

    } 

    void area(double x) 

    { 

        double z = 3.14 * x * x; 

        System.out.println("the area of the circle is "+z+" sq units"); 

    } 

    void area(double x,double y) 

     { 

      double z=((x*y)/2); 

      System.out.println("the area of the Triangle is "+z+" sq units"); 

     } 

} 

class Overload  

{ 

     public static void main(String args[])  

 { 



 

 pg. 5                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

    Area ob = new Area(); 

    ob.area(5); 

    ob.area(11,12); 

    ob.area(2.5); 

               ob.area(12.4,16.8); 

        } 

} 

OUTPUT 

 

 

2.2 OBJECTS AS PARAMETERS 

➢ Object as an argument is use to establish communication between two or more objects 

of same class as well as different class, i.e, user can easily process data of two same or 

different objects within function. 

2.2.1 Passing Object as Parameter in Function 

➢ While creating a variable of class type, we only create a reference to an object. 

➢ When we pass this reference to a function, the parameters that receive it will refer to 

the same object as that referred to by the argument. 

 

 

 



 

 pg. 6                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

Example Program 

class Add 

{  

 int a; 

 int b; 

 

 Add (int x,int y)// parametrized constructor  

 { 

  a=x; 

  b=y; 

 } 

 void sum(Add A1) // object  'A1' passed as parameter in function 'sum' 

 {  

  int sum1=A1.a+A1.b; 

  System.out.println("Sum of a and b :"+sum1); 

 } 

} 

 

public class classExAdd 

{ 

 public static void main(String arg[]) 

 {  

  Add A=new Add(5,8); 

  /* Calls  the parametrized constructor  

  with set of parameters*/ 

  A.sum(A); 

 } 

} 

OUTPUT 

 



 

 pg. 7                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

2.2.2 Passing Object as Parameter in Constructor 

➢ One of the most common uses of objects as parameters involves constructors. A 

constructor creates a new object initially the same as passed object.  

➢ It is also used to initialize private members. 

Example Program 

class Add 

{  

 private int a,b; 

 Add(Add A) 

 { 

  a=A.a; 

  b=A.b; 

 } 

 Add(int x,int y) 

 { 

  a=x; 

  b=y; 

 } 

 void sum() 

 {  

  int sum1=a+b; 

  System.out.println("Sum of a and b :"+sum1); 

 } 

} 



 

 pg. 8                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

class ExAddcons 

{  

 public static void main(String arg[]) 

 {  

  Add A=new Add(15,8); 

  Add A1=new Add(A); 

  A1.sum(); 

 } 

} 

OUTPUT 

 

2.3 Returning the Object from Function 

➢ In java, a function can return any type of data, including class type objects. 

➢ For ex: In the program given below, the add() function return an object which contain 

sum of values of two different Numbers(objects). 

Example Program 

import java.util.Scanner; 

class TwoNum 

{  

 private int a,b; 

 Scanner kb=new Scanner(System.in); 

 

 



 

 pg. 9                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 void getValues()                         // getValues() take values of a,b for every no. 

 { 

  System.out.print("Enter a: "); 

  a=kb.nextInt(); 

  System.out.print("Enter b: "); 

  b=kb.nextInt(); 

 } 

 void putValues()                          // putValues() show values for every no. 

 { 

  System.out.println(a+" "+b); 

 } 

 TwoNum add(TwoNum B)       /*class type function add() takeobject 'B' as parameter*/ 

 { 

  TwoNum D=new TwoNum();//object D act as instance variable 

  D.a=a+B.a; 

  D.b=b+B.b; 

  return (D);//returning object D 

 } 

 } 

class ExTwoNum 

{  

 public static void main(String arg[]) 

 { 

  TwoNum A=new TwoNum(); 

  A.getValues(); 

  A.putValues(); 

  TwoNum B=new TwoNum(); 

  B.getValues(); 

  B.putValues(); 



 

 pg. 10                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

  TwoNum C; 

  /*object A calls add() passing object B 

  as parameter and result are return at C*/ 

  C=A.add(B);                           

  C.putValues(); 

 } 

} 

 

OUTPUT 

 

 

2.4 STATIC, NESTED AND INNER CLASSES 

➢ Java inner class or nested class is a class that is declared inside the class or interface.  

➢ We use inner classes to logically group classes and interfaces in one place to be more 

readable and maintainable. 

➢ Additionally, it can access all the members of the outer class, including private data 

members and methods. 

Syntax of Inner class 

class Java_Outer_class 



 

 pg. 11                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

{   

 //code   

 class Java_Inner_class{   

  //code   

 }   

} 

Advantage of Java inner classes 

➢ Nested classes represent a particular type of relationship that is it can access all the 

members (data members and methods) of the outer class, including private. 

➢ Nested classes are used to develop more readable and maintainable code because it 

logically group classes and interfaces in one place only. 

➢ Code Optimization: It requires less code to write. 

Need of Java Inner class 

➢ Sometimes users need to program a class in such a way so that no other class can access it. 

Therefore, it would be better if you include it within other classes. 

Difference between nested class and inner class in Java 

➢ An inner class is a part of a nested class. Non-static nested classes are known as inner 

classes. 

2.4.1 Types of Nested classes 

➢ There are two types of nested classes non-static and static nested classes. The non-static 

nested classes are also known as inner classes. 

• Non-static nested class (inner class) 

✓ Member inner class 

✓ Anonymous inner class 

✓ Local inner class 



 

 pg. 12                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

• Static nested class 

 

 

2.4.1.1 Non-Static nested class (inner class) 

➢ A non-static nested class is a class within another class. It has access to members of the 

enclosing class (outer class). It is commonly known as inner class. 

➢ Since the inner class exists within the outer class, you must instantiate the outer class 

first, in order to instantiate the inner class. 

2.4.1.1.1 Member inner class 

➢ A non-static class that is created inside a class but outside a method is called member 

inner class. It is also known as a regular inner class. It can be declared with access 

modifiers like public, default, private, and protected. 

Syntax: 

class Outer 

{   

 //code   

 class Inner 

{   

  //code   

 }   

} 

Example Program for Member Inner Class 

class TestMemberOuter1  //Outer Class 

{   

 private int data=30;  //Private Variable 

 class Inner          //Inner Class 

 {   



 

 pg. 13                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

    void msg() 

  { 

   System.out.println("data is "+data); 

  }   

  }   

  public static void main(String args[]) 

 {   

    TestMemberOuter1 obj=new TestMemberOuter1();   

    TestMemberOuter1.Inner in=obj.new Inner();   

    in.msg();   

  }   

}   

OUTPUT 

 

2.4.1.1.2 Anonymous inner class 

➢ Java anonymous inner class is an inner class without a name and for which only a single 

object is created. 

➢ It should be used if you have to override a method of class or interface. Java 

Anonymous inner class can be created in two ways: 

• Class (may be abstract or concrete). 

• Interface 

2.4.1.1.2.1 Java anonymous inner class example using class 

abstract class Person 

{   



 

 pg. 14                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

abstract void eat();   

}   

 

class TestAnonymousInner 

 {   

 public static void main(String args[]) 

  {   

  Person p=new Person() 

  {   

  void eat() 

   { 

   System.out.println("nice fruits"); 

   }   

   };   

  p.eat();   

  }   

}   

OUTPUT 

 



 

 pg. 15                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

➢ A class is created, but its name is decided by the compiler, which extends the Person class and 

provides the implementation of the eat() method. 

➢ An object of the Anonymous class is created that is referred to by 'p,' a reference variable of 

Person type. 

 

 

2.4.1.1.2.2 Java anonymous inner class example using Interface 

interface Eatable  

{   

 void eat();   

}  

 class TestAnnonymousInner1 

 {   

 public static void main(String args[]) 

{   

 Eatable e=new Eatable() 

{   

  public void eat(){System.out.println("nice fruits");}   

 };   

 e.eat();   

 }   

}   

OUTPUT 

 

➢ It performs two main tasks behind this code: 



 

 pg. 16                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

• A class is created, but its name is decided by the compiler, which implements the 

Eatable interface and provides the implementation of the eat() method. 

• An object of the Anonymous class is created that is referred to by 'p', a reference 

variable of the Eatable type. 

2.4.1.1.3 Java Local inner class 

➢ A class created inside a method, is called local inner class in java. Local Inner Classes are 

the inner classes that are defined inside a block. Generally, this block is a method body. 

➢ Local Inner classes are not a member of any enclosing classes.They belong to the block 

they are defined within, due to which local inner classes cannot have any access modifiers 

associated with them. 

➢ They can be marked as final or abstract. 

➢ These classes have access to the fields of the class enclosing it. 

2.4.1.1.3.1 Example Program using Java Local inner class 

              public class localInner1 

                 {   

                  private int data=30;//instance variable   

                   void display() 

 {   

   class Local 

   {   

   void msg() 

   { 

    System.out.println(data); 

    }   

  }   

  Local l=new Local();   

  l.msg();   

  }   

 public static void main(String args[]) 

  {   

  localInner1 obj=new localInner1();   

  obj.display();   

 }   

}   



 

 pg. 17                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

OUTPUT 

 

 

2.4.2 Java static nested class 

➢ A static class is a class that is created inside a class, is called a static nested class in Java.  

➢ It cannot access non-static data members and methods. It can be accessed by outer class 

name. 

➢ It can access static data members of the outer class, including private. 

Example Program 

class TestOuter1 

  {   

  static int data=30;   

  static class Inner 

  {   

   void msg() 

     { 

      System.out.println("data is "+data);}   

      }   

   public static void main(String args[]) 

    {   

    TestOuter1.Inner obj=new TestOuter1.Inner();   

  obj.msg();   

  }   

  }   



 

 pg. 18                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

OUTPUT 

 

 

2.4.3 Java Nested Interface 

➢ An interface, i.e., declared within another interface or class, is known as a nested interface.  

➢ The nested interfaces are used to group related interfaces so that they can be easy to 

maintain. 

➢ The nested interface must be referred to by the outer interface or class. It can't be accessed 

directly. 

o The nested interface must be public if it is declared inside the interface, but it can 

have any access modifier if declared within the class. 

Syntax of nested interface which is declared within the interface 

interface interface_name 

{   

...   

interface nested_interface_name 

{   

  ...   

 }   

 } 

Syntax of nested interface which is declared within the class 

class class_name 



 

 pg. 19                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

{   

 ...   

 interface nested_interface_name 

{   

  ...   

 }   

} 

Example Program 

interface Showable 

 {   

  void show();   

  interface Message 

  {   

   void msg();   

  }   

}   

class TestNestedInterface1 implements Showable. Message 

 {   

 public void msg() 

  { 

  System.out.println("Hello nested interface"); 

  }    

 public static void main(String args[]) 

  {   

  Showable. Message message=new TestNestedInterface1(); 

  message.msg();   

 }   



 

 pg. 20                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

}   

OUTPUT 

 

 

2.5 INHERITANCE:  

2.5.1 BASICS 

➢ Inheritance in Java is a mechanism in which one object acquires all the properties and 

behaviors of a parent object. It is an important part of OOPs (Object Oriented 

programming system). 

➢ The idea behind inheritance in Java is that you can create new classes that are built 

upon existing classes.  

➢ When you inherit from an existing class, you can reuse methods and fields of the parent 

class. Moreover, you can add new methods and fields in your current class also. 

➢ Inheritance represents the IS-A relationship which is also known as a parent-child 

relationship. 

2.5.1.1 Why use inheritance in java 

➢ For Method Overriding (so runtime polymorphism can be achieved). 

➢ For Code Reusability. 

2.5.1.2 Terms used in Inheritance 

➢ Class:  

✓ A class is a group of objects which have common properties. It is a template or 

blueprint from which objects are created. 

➢ Sub Class/Child Class:  

✓ Subclass is a class which inherits the other class. It is also called a derived class, 

extended class, or child class. 



 

 pg. 21                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

➢ Super Class/Parent Class:  

✓ Superclass is the class from where a subclass inherits the features. It is also 

called a base class or a parent class. 

➢ Reusability:  

✓ As the name specifies, reusability is a mechanism which facilitates you to reuse 

the fields and methods of the existing class when you create a new class. You 

can use the same fields and methods already defined in the previous class. 

2.5.1.3 The syntax of Java Inheritance 

class Subclass-name extends Superclass-name   

{   

   //methods and fields   

}   

➢ The extends keyword indicates that you are making a new class that derives from an 

existing class. The meaning of "extends" is to increase the functionality. 

➢ A class which is inherited is called a parent or superclass, and the new class is called 

child or subclass. 

2.5.1.4 Java Inheritance Example 

 

➢ As displayed in the above figure, Programmer is the subclass and Employee is the 

superclass. The relationship between the two classes is Programmer IS-A Employee. 

It means that Programmer is a type of Employee. 



 

 pg. 22                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

Example Program 

class Employee 

{   

 float salary=40000;   

}   

class Programmer extends Employee 

{   

 int bonus=10000;   

 public static void main(String args[]) 

 {   

   Programmer p=new Programmer();   

   System.out.println("Programmer salary is:"+p.salary);   

   System.out.println("Bonus of Programmer is:"+p.bonus);   

}   

}   

OUTPUT 

 

 

 

 

 



 

 pg. 23                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

2.5.2 Types of Inheritance 

➢ Single inheritance 

➢ Multilevel inheritance 

➢ Hierarchical inheritance 

2.5.2.1 Single inheritance 

➢ Single inheritance enables a derived class to inherit properties and behavior from 

a single parent class. 

➢ In Single Inheritance there will be one parent class and one child class 

 

2.5.2.1.1 Example Program using Single Inheritance 

class A  //Parent Class 

  { 

   int a=10;  

   void display()  //Function Definition 

     { 

     System.out.println("Parent Class"); 

     } 

  } 

class B extends A  //Child Class 

   { 

    int b=50; 



 

 pg. 24                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

    void show() 

      { 

      System.out.println("Child Class"); 

      } 

   } 

class Single  //Main Class 

  {  

   public static void main(String args[]) 

     { 

      B OBJ=new B(); 

      System.out.println(OBJ.b); 

      OBJ.show(); 

      System.out.println(OBJ.a); 

      OBJ.display(); 

     } 

   } 

OUTPUT 

 

2.5.2.2 Multilevel inheritance 

➢ In Multilevel Inheritance, a derived class will be inheriting a base class and as well as 

the derived class also act as the base class to other class. 

➢ For example, class C extends class B, and class B extends class A. 



 

 pg. 25                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

2.5.2.2.1 Example Program using Multilevel Inheritance 

class A 

  { 

   int a=10; 

   void display() 

     { 

     System.out.println("Parent"); 

     } 

  } 

class B extends A 

   { 

    int b=50; 

    void show() 

      { 

      System.out.println("Child 1"); 

      } 

   } 

class C extends B 



 

 pg. 26                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

  {  

   int c=100; 

    void show1() 

      { 

      System.out.println("Child 2"); 

      } 

   } 

class Multilevel 

  { 

  public static void main(String args[]) 

     { 

      B obj1=new B(); 

      System.out.println(obj1.b); 

      obj1.show(); 

      System.out.println(obj1.a); 

      obj1.display(); 

      C obj2=new C(); 

      System.out.println(obj2.c); 

      obj2.show1(); 

      System.out.println(obj2.b); 

      obj2.show(); 

      System.out.println(obj2.a); 

      obj2.display(); 

     } 

   } 

 

 



 

 pg. 27                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

OUTPUT 

 

2.5.2.3 Hierarchical Inheritance  

➢ "Hierarchical inheritance" occurs when multiple child classes inherit the methods and 

properties of the same parent class. This simply means we have only one superclass(base 

class) and multiple sub-classes (Child Class) in hierarchical inheritance in Java. 

➢ In below image, the class A serves as a base class for the derived class B,C and D. 

 

2.5.2.3.1 Example Program using Hierarchical Inheritance 

class A  //Parent Class 

  { 

   int a=10; 

   void display() 



 

 pg. 28                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

     { 

     System.out.println("Parent"); 

     } 

  } 

class B extends A 

   { 

    int b=50; 

    void show() 

      { 

      System.out.println("Child 1"); 

      } 

   } 

class C extends A 

  {  

   int c=100; 

    void show1() 

      { 

      System.out.println("Child 2"); 

      } 

   } 

class Hierarchial  // Main Class 

  { 

  public static void main(String args[]) 

     { 

      B obj1=new B(); 

      System.out.println(obj1.b); 

      obj1.show(); 



 

 pg. 29                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

      System.out.println(obj1.a); 

      obj1.display(); 

      C obj2=new C(); 

      System.out.println(obj2.c); 

      obj2.show1(); 

      System.out.println(obj2.a); 

      obj2.display(); 

     } 

   } 

OUTPUT 

 

 

2.6 SUPER KEYWORD 

➢ The super keyword in Java is a reference variable which is used to refer immediate parent 

class object. 

➢ Whenever you create the instance of subclass, an instance of parent class is created 

implicitly which is referred by super reference variable. 

2.6.1 Usage of Java super Keyword 

➢ super can be used to refer immediate parent class instance variable. 

➢ super can be used to invoke immediate parent class method. 

➢ super() can be used to invoke immediate parent class constructor. 



 

 pg. 30                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

2.6.1.1 super is used to refer immediate parent class instance variable. 

➢ We can use super keyword to access the data member or field of parent class. It is used if 

parent class and child class have same fields. 

2.6.1.1.1 Example Program 

class Animal 

{   

String color="white";   

}   

class Dog extends Animal 

{   

String color="black";   

void printColor() 

{   

System.out.println(color); //prints color of Dog class   

System.out.println(super.color); //prints color of Animal class   

}   

}   

class TestSuper1{   

public static void main(String args[]) 

{   

Dog d=new Dog();   



 

 pg. 31                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

d.printColor();   

}}   

OUTPUT 

 

➢ In the above example, Animal and Dog both classes have a common property color. If we print 

color property, it will print the color of current class by default. To access the parent property, 

we need to use super keyword. 

2.6.1.2 super can be used to invoke immediate parent class method. 

➢ The super keyword can also be used to invoke parent class method. It should be used if subclass 

contains the same method as parent class. In other words, it is used if method is overridden. 

2.6.1.2.1 Example Program  

class Animal  

{   

void eat() 

{ 

System.out.println("eating...");}   

}   

class Dog extends Animal 

{   

void eat() 

{ 



 

 pg. 32                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

System.out.println("eating bread..."); 

}   

 

void bark() 

{ 

System.out.println("barking..."); 

}   

void work() 

{   

super.eat();   

bark();   

}   

}   

class TestSuper2 

{   

public static void main(String args[]) 

{   

Dog d=new Dog();   

d.work();   

} 

}   

OUTPUT 

 



 

 pg. 33                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

➢ In the above example Animal and Dog both classes have eat() method if we call eat() method 

from Dog class, it will call the eat() method of Dog class by default because priority is given 

to local. To call the parent class method, we need to use super keyword. 

2.6.1.3 super is used to invoke parent class constructor. 

class Animal 

{   

Animal() 

{ 

System.out.println("animal is created");}   

}   

class Dog extends Animal 

{   

Dog() 

{   

super();   

System.out.println("dog is created");   

}   

}   

class TestSuper3{   

public static void main(String args[]) 

{   

Dog d=new Dog();   

} 



 

 pg. 34                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

}   

OUTPUT 

 

➢ In the above example the super keyword used inside the child class constructor Dog will invoke 

the parent class constructor, i.e., Animal and the statement written inside the parent class 

constructor will be displayed. 

2.6.1.3.1 Example of super keyword where super() is provided by the compiler implicitly. 

class Animal 

{   

Animal() 

{ 

System.out.println("animal is created");}   

}   

class Dog extends Animal  

{   

Dog() 

{   

System.out.println("dog is created");   

}   



 

 pg. 35                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

}   

 

class TestSuper4 

{   

public static void main(String args[]) 

{   

Dog d=new Dog();   

} 

}   

 

2.7 METHOD OVERRIDING 

➢ In Java, method overriding occurs when a subclass (child class) has the same method as the 

parent class. 

➢ Here the child class (sub class) will override the method written in super class (parent class) 

o The Method Overriding can be implemented using Inheritance concept 

o Both the method in parent class and the child class should have the same return type 

o Return type, scope and parameters should be same 

o Static Methods cannot be overridden. 

o If the method is declared as a final in the super class, we cannot override that method 

in child class. 

o It is called as Run time polymorphism 

o Method overriding is an example for Dynamic binding 



 

 pg. 36                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

2.7.1 Example Program for Method Overriding 

class Parent 

  { 

   void display() 

      { 

       System.out.println("Parent Method"); 

      } 

  } 

class Child extends Parent 

   { 

      void display() 

      { 

       super.display(); 

       System.out.println("Child Method"); 

      } 

   } 

class Override 

   { 

     public static void main(String args[]) 

        { 

          Child obj=new Child(); 

          obj.display(); 

        } 

   } 

 

 



 

 pg. 37                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

OUTPUT 

 

2.7.2 Access Specifiers in Method Overriding 

➢ The same method declared in the superclass and its subclasses can have different access 

specifiers. However, there is a restriction. 

• We can only use those access specifiers in subclasses that provide larger access 

than the access specifier of the superclass. For example, 

• Suppose, a method  in the superclass is declared protected. Then, the same method 

myClass() in the subclass can be either public or protected, but not private. 

Example Program 

class Father  

{ 

   protected void displayInfo()  

   { 

      System.out.println("Good Morning"); 

   } 

} 

class Son extends Father  

{ 

   public void displayInfo()  

   { 

      super.displayInfo(); 

      System.out.println("Welcome"); 



 

 pg. 38                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

   } 

} 

class Main  

{ 

   public static void main(String[] args)  

    { 

     Son d1 = new Son(); 

      d1.displayInfo(); 

   } 

} 

OUTPUT 

 

2.7.3 Overriding Abstract Method in Java 

➢ In Java, it is compulsory to override abstract methods of the parent class in its child class 

because the derived class extends the abstract methods of the base class. 

➢ If we do not override the abstract methods in the subclasses then there will be a compilation 

error. Therefore, it is necessary for a subclass to override the abstract methods of its base 

class. 

 

 

 

 



 

 pg. 39                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

Example Program 

abstract class Parent 

{ 

  //abstract method 

  abstract public void display2(); 

} 

class Child extends Parent 

{ 

  // Must Override this method while extending Parent class 

  public void display2() 

  { 

    System.out.println("Overriding abstract method"); 

  } 

} 

public class AbstractClassDemo 

{ 

  public static void main(String[] args) 

  { 

    Child obj = new Child(); 

    obj.display2(); 

  } 

} 

OUTPUT 

 



 

 pg. 40                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

2.8 DYNAMIC METHOD DISPATCH 

➢ In Java, Dynamic method dispatch is a technique in which object refers to superclass but 

at runtime, the object is constructed for subclass. In other words, it is a technique in which 

a superclass reference variable refers to a subclass object. 

2.8.1 Example Program using Dynamic Method Dispatch 

class Apple  

{  

    void display()  

    {  

        System.out.println("Inside Apple's display method"); 

    }  

}  

class Banana extends Apple  

{  

    void display()   // overriding display() 

    {  

        System.out.println("Inside Banana's display method");  

    }  

}  

class Cherry extends Apple  

{  

    void display()   // overriding display() 

    {  

        System.out.println("Inside Cherry's display method");  

    }  



 

 pg. 41                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

}  

 

class Fruits_Dispatch  

{  

    public static void main(String args[])  

    {   

        Apple a  = new Apple();   // object of Apple 

        Banana b = new Banana();  // object of Banana 

        Cherry c = new Cherry();  // object of Cherry  

        Apple ref;    // taking a reference of Apple    

         ref = a;   // r refers to a object in Apple 

         ref.display();   // calling Apple's version of display() 

        ref = b;   // r refers to a object in Banana 

        ref.display();   // calling Banana's version of display() 

        ref = c;  // r refers to a object in Cherry 

        ref.display();  // calling Cherry's version of display() 

    }  

} 

OUTPUT 

 

 

 

 



 

 pg. 42                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

2.9 ABSTRACT CLASSES  

➢ Abstraction is a process of hiding the implementation details and showing only 

functionality to the user. 

➢ Another way, it shows only important things to the user and hides the internal details, for 

example sending sms, you just type the text and send the message. You don't know the 

internal processing about the message delivery. 

➢ If any class consist of atleast one Abstract method then the class is called as Abstract class. 

It is declared with abstract keyword. It can have both abstract and non-abstract methods 

(method with body). Object cannot be created or instantiated for an Abstract Class. 

➢ Example abstract class 

abstract class A{}   

2.9.1 Abstract method 

➢ If any class consists of only the declaration of the method and hiding the implementation 

part then the method is called as Abstract Method. Implementation of Abstract Method will 

be written in Derived Class. 

➢ Example abstract method 

o abstract void printStatus();  //no body and abstract   

2.9.2 Example of abstract class that has abstract method 

abstract class A 

  { 

   abstract void display(); 

  } 

class B extends A 

  { 

    void display() 

      { 

       System.out.println("Abstract Method in Class A"); 

      } 

  } 

class AbstractMain 

  { 

   public static void main(String args[]) 



 

 pg. 43                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

    { 

     B obj=new B(); 

     obj.display(); 

    } 

  } 

OUTPUT 

 

2.10 USING FINAL KEYWORD WITH INHERITANCE IN JAVA 

➢ final is a keyword in java used for restricting some functionalities. We can declare 

variables, methods, and classes with the final keyword. 

➢ We can use final keywords for variables, methods, and class. 

➢ If we use the final keyword for the inheritance that is if we declare any method with the 

final keyword in the base class so the implementation of the final method will be the same 

as in derived class. 

➢ We can declare the final method in any subclass for which we want that if any other class 

extends this subclass. 

2.10.1 Case 1: Declare final variable with inheritance 

class Parent  

   { 

    /* Creation of final variable pa of string type i.e  

    the value of this variable is fixed throughout all  

    the derived classes or not overidden*/ 

    final String pa = "Hello , We are in parent class variable"; 

    } 



 

 pg. 44                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

   class Child extends Parent  

  { 

    /* Creation of variable ch of string type i.e  

    the value of this variable is not fixed throughout all  

    the derived classes or overidden*/ 

    String ch = "Hello , We are in child class variable"; 

   } 

    class Test  

   { 

    public static void main(String[] args)  

     { 

        // Creation of Parent class object 

        Parent p = new Parent(); 

        // Calling a variable pa by parent object  

        System.out.println(p.pa); 

        // Creation of Child class object 

        Child c = new Child(); 

        // Calling a variable ch by Child object  

        System.out.println(c.ch); 

        // Calling a variable pa by Child object  

        System.out.println(c.pa); 

    } 

} 

 

 

 



 

 pg. 45                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

OUTPUT 

 

2.10.2 Case 2: Declare final methods with inheritance 

// Declaring Parent class 

class Parent { 

    /* Creation of final method parent of void type i.e  

    the implementation of this method is fixed throughout  

    all the derived classes or not overidden*/ 

    final void parent() { 

        System.out.println("Hello , we are in parent method"); 

    } 

} 

// Declaring Child class by extending Parent class 

class Child extends Parent { 

    /* Creation of final method child of void type i.e  

    the implementation of this method is not fixed throughout  

    all the derived classes or not overidden*/ 

    void child()  

    { 

        System.out.println("Hello , we are in child method"); 

    } 



 

 pg. 46                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

} 

class Test { 

    public static void main(String[] args) { 

        // Creation of Parent class object 

        Parent p = new Parent(); 

        // Calling a method parent() by parent object  

        p.parent(); 

        // Creation of Child class object 

        Child c = new Child(); 

        // Calling a method child() by Child class object  

        c.child(); 

        // Calling a method parent() by child object  

        c.parent(); 

    } 

} 

OUTPUT 

 

2.10.3 Java final class 

➢ If we make any class as final, we cannot extend it. 

Example 

final class Bike 

{ 

}   

class Honda1 extends Bike 



 

 pg. 47                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

{   

 void run() 

 { 

  System.out.println("running safely with 100kmph"); 

 }   

 public static void main(String args[]) 

 {   

  Honda1 honda= new Honda1();   

    honda.run();   

   }   

}   

 

OUTPUT 

 

2.11 INTERFACES. 

2.11.1 Interfaces-Declaration and Implementation 

➢ An interface in java is a blueprint of a class. It has static constants and abstract 

methods. 

➢ The interface in java is a mechanism to achieve abstraction. There can be only 

abstract methods in the java interface not method body. It is used to achieve abstraction 

and multiple inheritance in Java. 

2.11.1.1 Interface Declaration 

➢ Interface is declared by using interface keyword. It provides total abstraction; means 

all the methods in interface are declared with empty body and are public and all fields 

are public, static and final by default.  

➢ A class that implement interface must implement all the methods declared in the 

interface. 



 

 pg. 48                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

 

Syntax: 

interface <interface_name> 

{   

    // declare constant fields   

    // declare methods that abstract    

    // by default.   

}   

2.8.2 Interface Implementation 

interface printable 

{   

 void print();   

}   

class A6 implements printable 

{   

 public void print() 

 { 

  System.out.println("Hello"); 

 }   

 public static void main(String args[]) 

 {   

  A6 obj = new A6();   

  obj.print();   

  }   

}   

Output 

Hello 

 

2.11.2 Achieving Multiple Inheritance using Interface 

➢ Multiple Inheritance is a feature of object-oriented concept, where a class can inherit 

properties of more than one parent class. 

 

https://www.javatpoint.com/opr/test.jsp?filename=A6


 

 pg. 49                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 
 

 

Example Program 

 

interface Father 

{  

     public abstract void work(); //Method Declaration  

} 

interface Mother  

{  

     public abstract void work(); //Method Declaration  

}  

public class Son implements Father,Mother   

   { 

    public void work() 

      { 

      System.out.println("Parents are Working"); 

      } 

   public static void main(String args[])  

   {  

       Son S = new Son();  

       S.work(); 

   }  

} 

OUTPUT 



 

 pg. 50                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 

 

2.11.3 HYBRID INHERITANCE 

 

➢ Hybrid inheritance is a combination of Single and Multiple inheritance. 

➢ By using interfaces, we can achieve hybrid inheritance in Java 

 

Example Program 

 

interface Features 

  { 

   abstract void dialling(); 

   abstract void messaging(); 

  } 

interface Addons 

  { 

   abstract void vcalling(); 

   abstract void mms(); 

  } 

class Featuredphone implements Features 



 

 pg. 51                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

  { 

   public void dialling() 

     { 

      System.out.println("Featured Phone is Dialling"); 

     } 

 

   public void messaging() 

     { 

      System.out.println("Featured Phone is Messaging"); 

     } 

  } 

class SmartPhone implements Features,Addons 

   {  

     public void dialling() 

     { 

      System.out.println("SmartPhone is Dialling"); 

     } 

   public void messaging() 

     { 

      System.out.println("SmartPhone is Messaging"); 

     } 

   public void vcalling() 

     { 

      System.out.println("SmartPhone is in Video Call"); 

     } 

   public void mms() 

     { 

      System.out.println("SmartPhone is sending mms"); 

     } 

   } 

class Mobile 



 

 pg. 52                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

  { 

   public static void main(String args[]) 

     { 

      Featuredphone fp=new Featuredphone(); 

      SmartPhone sp=new SmartPhone(); 

      fp.dialling(); 

      fp.messaging(); 

      sp.dialling(); 

      sp.messaging(); 

      sp.vcalling(); 

      sp.mms(); 

     } 

  } 

OUTPUT 

 

 

2.12 Packages 

 

A Package can be defined as a grouping of related types (classes, interfaces, enumerations and 

annotations ) providing access protection and namespace management. 

Some of the existing packages in Java are − 

• java.lang − bundles the fundamental classes 

• java.io − classes for input , output functions are bundled in this package 

 

 

 



 

 pg. 53                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

2.12.1 Creating a Package 

➢ While creating a package, First choose a name for the package and include 

a package statement along with that name at the top of every source file that contains the 

classes, interfaces, enumerations, and annotation types that you want to include in the 

package. 

➢ The package statement should be the first line in the source file. There can be only one 

package statement in each source file, and it applies to all types in the file. 

➢ If a package statement is not used then the class, interfaces, enumerations, and annotation 

types will be placed in the current default package. 

➢ To compile the Java programs with package statements, you have to use -d option as shown 

below. 

javac -d Destination_folder file_name.java 

Then a folder with the given package name is created in the specified destination, and the compiled 

class files will be placed in that folder. 

Example 

package pack; 

public class PackDemo 

{ 

   public void show() 

     { 

       System.out.println("Welcome to JAVA"); 

     } 

} 

 

 

import pack.PackDemo; 

class Pack1 

  { 



 

 pg. 54                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

    public static void main(String arg[]) 

      { 

       PackDemo obj=new PackDemo(); 

       obj.show(); 

      } 

   } 

 

 

 

OUTPUT 

 

 

2.12.2 IMPORTING PACKAGES 

➢ In java, the import keyword used to import built-in and user-defined packages. When a 

package has imported, we can refer to all the classes of that package using their name 

directly. 

➢ The import statement must be after the package statement, and before any other statement. 

➢ Using an import statement, we may import a specific class or all the classes from a package. 

2.12.2.1 Importing specific class 

Syntax 

import packageName.ClassName; 

2.12.2.1.1Example 

package myPackage; 

import java.util.Scanner; 



 

 pg. 55                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

public class ImportingExample { 

 public static void main(String[] args) { 

  Scanner read = new Scanner(System.in); 

  int i = read.nextInt(); 

  System.out.println("You have entered a number " + i); 

 } 

} 

➢ In the above code, the class ImportingExample belongs to myPackage package, and it also 

importing a class called Scanner from java.util package. 

2.12.2.2 Importing all the classes 

Syntax 

import packageName.*; 

Example Program 

package myPackage; 

import java.util.*; 

public class ImportingExample { 

 public static void main(String[] args) { 

  Scanner read = new Scanner(System.in); 

  int i = read.nextInt(); 

  System.out.println("You have entered a number " + i); 

  Random rand = new Random(); 

  int num = rand.nextInt(100); 

  System.out.println("Randomly generated number " + num); 



 

 pg. 56                                                                                                                                   BASTIN ROGERS C, AP/CSE, SMCE 

CS3391 OOP UNIT-2                                                

 } 

} 

➢ In the above code, the class ImportingExample belongs to myPackage package, and it also 

importing all the classes like Scanner, Random, Stack, Vector, ArrayList, HashSet, etc. from 

the java.util package. 

 

 

 

 



 

1                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

UNIT III - EXCEPTION HANDLING AND MULTITHREADING 

Exception Handling basics – Multiple catch Clauses – Nested try Statements – 

Java’s Built-in Exceptions – User defined Exception. Multithreaded 

Programming: Java Thread Model–Creating a Thread and Multiple Threads – 

Priorities – Synchronization – Inter Thread Communication- Suspending –

Resuming and Stopping Threads –Multithreading. Wrappers – Auto boxing. 

 
3.1. EXCEPTION HANDLING BASICS 

The exception handling in java is one of the powerful mechanism to handle the runtime 

errors so that normal flow of the application can be maintained.   

Exception Handling is a mechanism to handle runtime errors such as ClassNotFound, 

IO, SQL, Remote etc. 

3.1.1 Types of Exception 

There are mainly two types of exceptions: checked and unchecked where error is 

considered as unchecked exception.  

The sun microsystem says there are three types of exceptions: 

1. Checked Exception 

2. Unchecked Exception 

3. Error 

Difference between checked and unchecked exceptions 

1) Checked Exception 

The checked exceptions are those exceptions which is checked by the compiler at 

runtime e.g.IOException, SQLException etc. 

     2) Unchecked Exception 

The Unchecked exceptions are not checked by the compiler at run time e.g. Arithmetic 

Exception, NullPointerException, ArrayIndexOutOfBoundsException etc.  

    3) Error 

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError 

etc. 

 

 

 

 



 

2                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

3.1.2. HIERARCHY OF JAVA EXCEPTION CLASSES 

 

                          

3.1.3 THROWING AND CATCHING EXCEPTION 

There are 5 keywords used in java exception handling. 

1. try 

2. catch 

3. finally 

4. throw 

5. throws 

 



 

3                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 Java Try Block 

Java try block is used to enclose the code that might throw an exception. It must be used 

within the method.Java try block must be followed by either catch or finally block. 

Syntax 

try 

{   

//code that may throw exception   

} 

catch(Exception_class_Name ref) 

{}   

Catching Exceptions 

A method catches an exception using a combination of the try and catchkeywords. A 

try/catch block is placed around the code that might generate an exception. Code within a 

try/catch block is referred to as protected code, and the syntax for using try/catch looks like 

the following − 

Syntax 

try  

{ 

   // Protected code 

}  

catch (ExceptionName e1) 

{ 

   // Catch block 

} 

The code which is prone to exceptions is placed in the try block. When an exception 

occurs, that exception occurred is handled by catch block associated with it. Every trya block 

should be immediately followed either by a catch block or finally block. 

 Example 

The following is an array declared with 2 elements. Then the code tries to access the 

3rd element of the array which throws an exception. 

// File Name : ExcepTest.java 

import java.io.*; 

public class ExcepTest 



 

4                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

{ 

  public static void main(String args[])  

 { 

   try  

  { 

    int a[] = new int[2]; 

            System.out.println("Access element three :" + a[3]); 

        } catch (ArrayIndexOutOfBoundsException e) { 

          System.out.println("Exception thrown  :" + e); 

      } 

      System.out.println("Out of the block"); 

   } 

} 

This will produce the following result − 

Output 

 

3.2 MULTIPLE CATCH BLOCKS 

A try block can be followed by multiple catch blocks. The syntax for multiple catch 

blocks looks like the following − 

Syntax 

try { 

   // Protected code 

     } 

 catch (ExceptionType1 e1)  

{ 

   // Catch block 

} catch (ExceptionType2 e2) 

 { 

   // Catch block 

} catch (ExceptionType3 e3) 

 { 



 

5                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

   // Catch block 

} 

The previous statements demonstrate three catch blocks, but you can have any number 

of them after a single try. If an exception occurs in the protected code, the exception is thrown 

to the first catch block in the list. If the data type of the exception thrown matches 

ExceptionType1, it gets caught there. If not, the exception passes down to the second catch 

statement. This continues until the exception either is caught or falls through all catches, in 

which case the current method stops execution and the exception is thrown down to the 

previous method on the call stack. 

Example 

Here is code segment showing how to use multiple try/catch statements. 

class Excep1 

   { 

  public static void main(String args[]) 

      { 

      int i=10;  

try  

{ 

    i=i/Integer.parseInt(args[0]); 

} 

 catch(ArithmeticException e)  

{ 

   System.out.println(e); 

}  

catch(Exception e1)  

 { 

   System.out.println(e1); 

} 

   System.out.println("Value of i=" +i); 

} 

} 

 

OUTPUT 

 

 

 



 

6                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

3.3 Nested Try Statements 

➢ The try block within a try block is called nested try block. Every inner try block 

must have a corresponding catch blocks.If any inner try block does not does not 

have a catch block then the outer try block catch statement will be executed. 

Syntax 

try   

{   

    statement 1;   

    statement 2;   

    try   

    {   

        statement 1;   

        statement 2;   

    }   

    catch(Exception e)   

    {   

    }   

}   

catch(Exception e)   

{   

}   

 

Program 

class Excep6 

{   

 public static void main(String args[]) 

  {     

    try 

     {   

     System.out.println("going to divide");   

     int b =39/0;   

     } 

  catch(ArithmeticException e) 

     { 

     System.out.println(e); 

     }   

 

    try 



 

7                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

     {   

    int a[]=new int[5];   

    a[5]=4;   

    } 

   catch(ArrayIndexOutOfBoundsException e) 

     { 

     System.out.println(e); 

     }   

  catch(Exception e) 

     { 

     System.out.println("handeled"); 

     }   

  System.out.println("normal flow..");   

 }   

}   

Output 

 

Internal working of java try-catch block 

 



 

8                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

The JVM firstly checks whether the exception is handled or not. If exception is not handled, 

JVM provides a default exception handler that performs the following tasks:  

o Prints out exception description. 

o Prints the stack trace (Hierarchy of methods where the exception occurred). 

o Causes the program to terminate. 

But if exception is handled by the application programmer, normal flow of the application is 

maintained i.e. rest of the code is executed. 

The Finally Block 

The finally block follows a try block or a catch block. A finally block of code always 

executes, irrespective of occurrence of an Exception.  Using a finally block allows you to run 

any cleanup-type statements that you want to execute, no matter what happens in the protected 

code. 

A finally block appears at the end of the catch blocks and has the following syntax − 

Syntax 

try { 

   // Protected code 

} catch (ExceptionType1 e1) { 

   // Catch block 

} catch (ExceptionType2 e2) { 

   // Catch block 

} catch (ExceptionType3 e3) { 

   // Catch block 

}finally { 

   // The finally block always executes. 

} 

Case 1 

Let's see the java finally example where exception doesn't occur. 

class TestFinallyBlock 

{   

 public static void main(String args[]) 

 {   

  try 

 {   

 int data=25/5;   

    System.out.println(data);   

   }   

  catch(NullPointerException e) 



 

9                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 { 

  System.out.println(e); 

 }   

 finally 

 { 

  System.out.println("finally block is always executed"); 

 }   

 System.out.println("rest of the code...");   

  }   

}   

Test it Now 

Output: 

5 

finally block is always executed 

 

Case 2 

Let's see the java finally example where exception occurs and not handled. 

class TestFinallyBlock1 

{   

 public static void main(String args[]) 

 {   

  try 

  { 

   int data=25/0;   

   System.out.println(data);   

  }   

    catch(NullPointerException e) 

    { 

     System.out.println(e); 

    }   

    finally 

    { 

     System.out.println("finally block is always executed"); 

    }   

    System.out.println("rest of the code...");   

   }   

}   

Output:finally block is always executed 

       Exception in thread main java.lang.ArithmeticException:/ by zero 

 

Case 3 

Let's see the java finally example where exception occurs and handled. 

public class TestFinallyBlock2 

{   

 public static void main(String args[]) 

 {   

    try 

    {   

      int data=25/0;   

      System.out.println(data);   



 

10                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

    }   

    catch(ArithmeticException e) 

    { 

     System.out.println(e); 

    }   

    finally 

    { 

     System.out.println("finally block is always executed"); 

    }   

    System.out.println("rest of the code...");   

   }   

}   

Output: Exception in thread main java.lang.ArithmeticException:/ by zero 

       finally block is always executed 

 

3.4.THROWING AND CATCHING EXCEPTIONS 

The Throw Keyword 

The throw keyword in Java is used to explicitly throw an exception from a method or 

any block of code. We can throw either checked or unchecked exception.The throw 

keyword is mainly used to throw custom exceptions. 

Syntax 

throw new ArithmeticException(“—“); 

Program 

class Throw 

  { 

  static void validage(int age) 

    { 

    if(age<18) 

       { 

        throw new ArithmeticException("Not valid to give vote"); 

       } 

    else 

      { 

       System.out.println("Welcome to vote"); 

      } 

   } 

public static void main(String args[]) 

  { 

  try 

   { 

   validage(Integer.parseInt(args[0])); 

   } 

  catch(ArithmeticException e) 

     { 

     System.out.println(e); 

     } 



 

11                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

  System.out.println("Testing Complete"); 

} 

} 

 

Output 

 

 

The Throws Keyword 

The Java throws keyword is used to declare an exception. It gives an information to the 

programmer that there may occur an exception so it is better for the programmer to provide 

the exception handling code so that normal flow can be maintained. 

Syntax 

return_type method_name() throws exception_class_name{   

//method code   

}   

 

Program 

 

class myexception extends Exception 

  { 

  myexception(String s) 

      { 

      super(s);   

      } 

} 

class Throws 

  { 

  static void validage(int age) throws myexception 

    { 

    if(age<18) 

       { 

        throw new myexception("Not valid to give vote"); 

       } 



 

12                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

    else 

      { 

       System.out.println("Welcome to vote"); 

      } 

   } 

public static void main(String args[]) 

  { 

  try 

   { 

   validage(Integer.parseInt(args[0])); 

   } 

  catch(myexception my) 

     { 

     System.out.println(my); 

     } 

  System.out.println("Testing Complete"); 

} 

} 

Output 

 

3.4 JAVA’S BUILT-IN EXCEPTIONS 

 

SI.NO. Java UnChecked Exceptions Defined 

in java.lang. 

Java Checked Exceptions Defined 

in java.lang. 

1. ArithmeticException 

Arithmetic error, such as divide-by-

zero. 

ClassNotFoundException 

Class not found. 

2. ArrayIndexOutOfBoundsException 

Array index is out-of-bounds. 

CloneNotSupportedException 



 

13                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

Attempt to clone an object that does 

not implement the Cloneable 

interface. 

3. ArrayStoreException 

Assignment to an array element of an 

incompatible type. 

IllegalAccessException 

Access to a class is denied. 

4. ClassCastException 

Invalid cast. 

InstantiationException 

Attempt to create an object of an 

abstract class or interface. 

5. IllegalArgumentException 

Illegal argument used to invoke a 

method. 

InterruptedException 

One thread has been interrupted by 

another thread. 

6. IllegalMonitorStateException 

Illegal monitor operation, such as 

waiting on an unlocked thread. 

NoSuchFieldException 

A requested field does not exist. 

7. IllegalStateException 

Environment or application is in 

incorrect state. 

NoSuchMethodException 

A requested method does not exist. 

8. IllegalThreadStateException 

Requested operation not compatible 

with the current thread state. 

 

9. IndexOutOfBoundsException 

Some type of index is out-of-bounds. 

 

10. NegativeArraySizeException 

Array created with a negative size. 

 

11. NullPointerException 

Invalid use of a null reference. 

 

12. NumberFormatException 

Invalid conversion of a string to a 

numeric format. 

 

13. SecurityException 

Attempt to violate security. 

 

14. StringIndexOutOfBounds  



 

14                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

Attempt to index outside the bounds of 

a string. 

15. UnsupportedOperationException 

An unsupported operation was 

encountered. 

 

 

Built-in exceptions are the exceptions which are available in Java libraries. These 

exceptions are suitable to explain certain error situations. Below is the list of important built -

in exceptions in Java. 

3.4.1 Examples of Built-in Exception: 

1. Arithmetic exception: It is thrown when an exceptional condition has occurred in an 

arithmetic operation. 

// Java program to demonstrate  

// ArithmeticException 

class ArithmeticException_Demo  

{ 

public static void main(String args[]) 

    { 

        try { 

            int a = 30, b = 0; 

            int c = a / b; // cannot divide by zero 

            System.out.println("Result = " + c); 

        } 

        catch (ArithmeticException e) { 

            System.out.println("Can't divide a number by 0"); 

        } 

    } 

} 

Output: 

Can't divide a number by 0 

2. ArrayIndexOutOfBounds Exception : It is thrown to indicate that an array has been 

accessed with an illegal index. The index is either negative or greater than or equal to 

the size of the array. 



 

15                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

// Java program to demonstrate  

// ArrayIndexOutOfBoundException 

class ArrayIndexOutOfBound_Demo  

{ 

public static void main(String args[]) 

    { 

        try  

            { 

            int a[] = new int[5]; 

            a[6] = 9; // accessing 7th element in an array of size 5 

        } 

        catch (ArrayIndexOutOfBoundsException e) { 

            System.out.println("Array Index is Out Of Bounds"); 

        } 

    } 

} 

Output: 

Array Index is Out Of Bounds 

3. ClassNotFoundException : This Exception is raised when we try to access a class 

whose definition is not found. 

// Java program to illustrate the  

// concept of ClassNotFoundException 

class Bishal 

{ 

} 

 class Geeks  

{ 

} 

 class MyClass 

{ 

public static void main(String[] args) 

    { 

        Object o = class.forName(args[0]).newInstance(); 



 

16                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

        System.out.println("Class created for" + o.getClass().getName()); 

    } 

} 

Output: 

 ClassNotFoundException 

4. FileNotFoundException : This Exception is raised when a file is not accessible or does 

not open. 

// Java program to demonstrate  

// FileNotFoundException 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

class File_notFound_Demo  

{ 

public static void main(String args[]) 

    { 

        try { 

  

            // Following file does not exist 

            File file = new File("E:// file.txt"); 

  

            FileReader fr = new FileReader(file); 

        } 

        catch (FileNotFoundException e) { 

            System.out.println("File does not exist"); 

        } 

    } 

} 

Output: 

File does not exist 

5. IOException : It is thrown when an input-output operation failed or interrupted 

// Java program to illustrate IOException 

import java.io.*; 

class Geeks 

 { 

public static void main(String args[]) 

    { 

        FileInputStream f = null; 

        f = new FileInputStream("abc.txt"); 

        int i; 

        while ((i = f.read()) != -1) { 



 

17                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

            System.out.print((char)i); 

        } 

        f.close(); 

    } 

} 

Output: 

error: unreported exception IOException; must be caught or declared to be thrown 

6. InterruptedException : It is thrown when a thread is waiting, sleeping, or doing some 

processing, and it is interrupted. 

// Java Program to illustrate  

// InterruptedException 

class Geeks { 

public static void main(String args[]) 

    { 

        Thread t = new Thread(); 

        t.sleep(10000); 

    } 

} 

 

Output: 

error: unreported exception InterruptedException; must be caught or declared to be thrown 

7. NoSuchMethodException : t is thrown when accessing a method which is not found. 

// Java Program to illustrate  

// NoSuchMethodException 

class Geeks { 

public Geeks() 

  { 

        Class i; 

        try { 

            i = Class.forName("java.lang.String"); 

            try { 

                Class[] p = new Class[5]; 

            } 



 

18                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

            catch (SecurityException e) { 

                e.printStackTrace(); 

            } 

            catch (NoSuchMethodException e) { 

                e.printStackTrace(); 

            } 

        } 

        catch (ClassNotFoundException e) { 

            e.printStackTrace(); 

        } 

    } 

 public static void main(String[] args) 

    { 

        new Geeks(); 

    } 

} 

Output: 

error: exception NoSuchMethodException is never thrown  

in body of corresponding try statement 

8. NullPointerException : This exception is raised when referring to the members of a 

null object. Null represents nothing 

// Java program to demonstrate NullPointerException 

class NullPointer_Demo { 

public static void main(String args[]) 

{ 

        try { 

            String a = null; // null value 

            System.out.println(a.charAt(0)); 

        } 

        catch (NullPointerException e) { 

            System.out.println("NullPointerException.."); 

        } 

    } 



 

19                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

} 

Output: 

NullPointerException.. 

9. NumberFormatException : This exception is raised when a method could not convert 

a string into a numeric format. 

// Java program to demonstrate  

// NumberFormatException 

class NumberFormat_Demo  

{ 

   public static void main(String args[]) 

    { 

        try { 

            // "akki" is not a number 

            int num = Integer.parseInt("akki"); 

             System.out.println(num); 

        } 

        catch (NumberFormatException e) { 

            System.out.println("Number format exception"); 

        } 

    } 

} 

Output: 

Number format exception 

10. StringIndexOutOfBoundsException : It is thrown by String class methods to indicate 

that an index is either negative than the size of the string. 

// Java program to demonstrate  

// StringIndexOutOfBoundsException 

class StringIndexOutOfBound_Demo { 

public static void main(String args[]) 

 { 

        try { 

            String a = "This is like chipping "; // length is 22 

            char c = a.charAt(24); // accessing 25th element 



 

20                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

            System.out.println(c); 

        } 

        catch (StringIndexOutOfBoundsException e) { 

            System.out.println("StringIndexOutOfBoundsException"); 

        } 

    } 

} 

Output: 

StringIndexOutOfBoundsException 

 

3.5 USER DEFINED EXCEPTION 

➢ Java provides us the facility to create our own exceptions which are basically 

derived classes of Exception. Creating our own Exception is known as a custom 

exception or user-defined exception.  

➢ Basically, Java custom exceptions are used to customize the exception according to 

user needs.  

➢ In simple words, we can say that a User-Defined Exception or custom exception is 

creating your own exception class and throwing that exception using the ‘throw’ 

keyword. 

3.5.1 Example of java custom exception. 

class myexception extends Exception 

  { 

  myexception(String s) 

      { 

      super(s); 

      } 

} 

class Throws 

  { 

  static void validage(int age) throws myexception 



 

21                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

    { 

    if(age<18) 

       { 

        throw new myexception("Not valid to give vote"); 

       } 

    else 

      { 

       System.out.println("Welcome to vote"); 

      } 

   } 

public static void main(String args[]) 

  { 

  try 

   { 

   validage(Integer.parseInt(args[0])); 

   } 

  catch(myexception my) 

     { 

     System.out.println(my); 

     } 

  System.out.println("Testing Complete"); 

} 

} 

 

 

 

 



 

22                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

OUTPUT 

 

 
 

3.6 MULTITHREADED PROGRAMMING: 

Multithreading 

 

➢ Multithreading in java is a process of executing multiple threads simultaneously. 

➢ A thread is a lightweight sub-process, the smallest unit of processing. Multiprocessing 

and multithreading, both are used to achieve multitasking. 

➢ However, we use multithreading than multiprocessing because threads use a shared 

memory area. They don't allocate separate memory area so saves memory, and context-

switching between the threads takes less time than process.  

➢ Java Multithreading is mostly used in games, animation, etc. 

 

Differences between Multithreading and Multitasking 

 

➢ Multitasking is a process of executing multiple tasks simultaneously. We use 

multitasking to utilize the CPU. Multitasking can be achieved in two ways:  

• Process-based Multitasking (Multiprocessing) 

• Thread-based Multitasking (Multithreading) 

1) Process-based Multitasking (Multiprocessing) 

o Each process has an address in memory. In other words, each process allocates a 

separate memory area. 

o A process is heavyweight. 

o Cost of communication between the process is high. 

o Switching from one process to another requires some time for saving and loading 

registers, memory maps, updating lists, etc. 

2) Thread-based Multitasking (Multithreading) 

o Threads share the same address space. 



 

23                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

o A thread is lightweight. 

o Cost of communication between the thread is low. 

Note: At least one process is required for each thread 

 

3.6.1 JAVA THREAD MODEL 

Thread Life Cycle 

 

➢ A thread can be in one of the five states. The life cycle of the thread in java is controlled 

by JVM. The java thread states are as follows: 

• New 

• Runnable 

• Running 

• Non-Runnable (Blocked) 

• Terminated 

 

Fig 1. Thread Life Cycle 

 

 

 

 

 



 

24                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

New 

➢ The thread is in new state if you create an instance of Thread class but before the 

invocation of start() method.  

Runnable 

➢ The thread is in runnable state after invocation of start() method, but the thread 

scheduler has not selected it to be the running thread.  

Running 

➢ The thread is in running state if the thread scheduler has selected it.  

Non-Runnable (Blocked) 

➢ This is the state when the thread is still alive, but is currently not eligible to run.  

Terminated 

➢ A thread is in terminated or dead state when its run() method exits.  

 

3.7 CREATING A THREAD AND MULTIPLE THREADS 

➢ There are two ways to create a thread: 

• By extending Thread class 

• By implementing Runnable interface. 

Java Thread Example by extending Thread class 

 

class Multi extends Thread{   

public void run() 

{   

System.out.println("thread is running...");   

}   

public static void main(String args[]) 

{   

Multi t1=new Multi();   

t1.start();   

 }   

}   

Output: 

thread is running... 

 

 

 



 

25                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 

Java Thread Example by implementing Runnable interface 

 

class Multi3 implements Runnable  

{   

public void run() 

{   

System.out.println("thread is running...");   

}     

public static void main(String args[]) 

{   

Multi3 m1=new Multi3();   

Thread t1 =new Thread(m1);   

t1.start();   

 }   

} 

Output: 

thread is running... 

 

3.7.2 Creating Multiple Threads in Java 

 

o Creating more than one thread to perform multiple tasks is called multithreading 

in Java. In multiple threading programming, multiple threads are executing 

simultaneously that improves the performance of CPU because CPU is not idle 

if other threads are waiting to get some resources. 

o Multiple threads share the same address space in the heap memory. Therefore, 

It is good to create multiple threads to execute multiple tasks rather than creating 

multiple processes. 

                                



 

26                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 

Example Program 

// Two threads performing same tasks at a time. 

//By implementing Runnable Interface 

class MultiThread implements Runnable 

  {   

public void run() 

    {   

    for(int i=0;i<5;i++) 

       { 

        System.out.println("thread running is "+i); 

       } 

    }   

public static void main(String args[]) 

   {   

    MultiThread m1=new MultiThread();   

    Thread t1 =new Thread(m1);   

    Thread t2= new Thread(m1); 

    Thread t3= new Thread(m1);  

    t1.start();   

    t2.start();   

    t3.start();   

   }   

}   

OUTPUT 

 



 

27                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 

3.8 PRIORITIES 

➢ Thread priority in Java is a number assigned to a thread that is used by Thread scheduler 

to decide which thread should be allowed to execute. 

➢ In Java, each thread is assigned a different priority that will decide the order 

(preference) in which it is scheduled for running. 

➢ Thread priorities are represented by a number from 1 to 10 that specifies the relative 

priority of one thread to another. 

➢ The default priority of a thread is 5. Thread class in Java also provides several priority 

constants to define the priority of a thread. These are: 

1. MIN_PRIORITY = 1 

2. NORM_PRIORITY = 5 

3. MAX_PRIORTY = 10 

➢ Thread scheduler selects the thread for execution on the first-come, first-serve basis. 

That is, the threads having equal priorities share the processor time on the first -come 

first-serve basis. 

➢ When multiple threads are ready for execution, the highest priority thread is selected 

and executed by JVM. 

➢ In case when a high priority thread stops, or enters the blocked state, a low priority 

thread starts executing. 

➢ If any high priority thread enters the runnable state, it will preempt the currently running 

thread forcing it to move to the runnable state. Note that the highest priority thread 

always preempts any lower priority thread. 

3.8.1 How to get Priority of Current Thread in Java? 

• Thread class provides a method named getPriority() that is used to determine the 

priority of a thread. It returns the priority of a thread through which it is called. 

3.8.1.1 Let’s create a Java program in which we will determine the priority and name of  

            the current thread. 

public class A implements Runnable 

{ 

public void run() 

{ 

  System.out.println(Thread.currentThread()); // This method is static. 



 

28                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

} 

public static void main(String[] args)  

{ 

 A a = new A(); 

 Thread t = new Thread(a, "NewThread"); 

 System.out.println("Priority of Thread: " +t.getPriority()); 

 System.out.println("Name of Thread: " +t.getName()); 

 t.start(); 

  } 

} 

OUTPUT 

 

3.8.2 How to set Priority of Thread in Java? 

• The setPriority() of Thread class is used to set the priority of a thread. This method 

accepts an integer value as an argument and sets that value as priority of a thread 

through which it is called. The syntax to set the priority of a thread is as follows:  

o ThreadName.setPriority(n); 

where, n is an integer value which ranges from 1 to 10. 

3.8.2.1 Example Program 

public class A implements Runnable 

{ 

public void run() 

{ 

  System.out.println(Thread.currentThread()); // This method is static. 

} 

public static void main(String[] args)  

{ 

 A a = new A(); 

 Thread t = new Thread(a, "NewThread"); 

 t.setPriority(2); // Setting the priority of thread. 

 System.out.println("Priority of Thread: " +t.getPriority()); 



 

29                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 System.out.println("Name of Thread: " +t.getName()); 

 t.start(); 

  } 

} 

OUTPUT 

 

3.8.2.2 Example Program using setPriority Method in JAVA 

public class A implements Runnable 

{ 

public void run() 

{ 

  System.out.println(Thread.currentThread()); // This method is static. 

} 

public static void main(String[] args)  

{ 

 A a = new A(); 

 Thread t1 = new Thread(a, "First Thread"); 

 Thread t2 = new Thread(a, "Second Thread"); 

 Thread t3 = new Thread(a, "Third Thread"); 

 t1.setPriority(4); // Setting the priority of first thread. 

 t2.setPriority(2); // Setting the priority of second thread. 

 t3.setPriority(8); // Setting the priority of third thread. 

 t1.start(); 

 t2.start(); 

 t3.start(); 

  } 

} 

OUTPUT 



 

30                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 
 

3.9 SYNCHRONIZATION 

➢ Synchronization in java is the capability to control the access of multiple threads to any 

shared resource. Java Synchronization is better option where we want to allow only one 

thread to access the shared resource. 

The synchronization is mainly used to 

1. To prevent thread interference. 

2. To prevent consistency problem. 

There are two types of thread synchronization mutual exclusive and inter-thread 

communication.  

1. Mutual Exclusive  

1. Synchronized method. 

2. Synchronized block. 

3. static synchronization. 

2. Inter-thread communication  

3.9.1 Mutual Exclusive 

➢ Mutual Exclusive helps keep threads from interfering with one another while sharing 

data. This can be done by three ways in java: 

• by synchronized method 

• by synchronized block 

• by static synchronization 

Concept of Lock in Java 

 

➢ Synchronization is built around an internal entity known as the lock or monitor. Every 

object has a lock associated with it. By convention, a thread that needs consistent access 

to an object's fields has to acquire the object's lock before accessing them, and then 

release the lock when it's done with them.  

3.9.1.1 By synchronized method 

 

• If you declare any method as synchronized, it is known as synchronized method. 

• Synchronized method is used to lock an object for any shared resource. 



 

31                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

• When a thread invokes a synchronized method, it automatically acquires the lock for 

that object and releases it when the thread completes its task. 

 

 

 

 

 

Example Program for Synchronized method 

class Table  

{ 

synchronized void printTable(int n) 

{//synchronized method   

   for(int i=1;i<=5;i++) 

   {   

        System.out.println(n*i);   

        try 

       {   

            Thread.sleep(400);   

     } 

         catch(Exception e) 

         { 

            System.out.println(e); 

         }   

      }   

   }   

}   

class MyThread1 extends Thread 

{   

   Table t;   

   MyThread1(Table t) 

   {   

      this.t=t;   

   }   

   public void run() 

   {   



 

32                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

      t.printTable(5);   

   }   

}   

class MyThread2 extends Thread 

{   

   Table t;   

   MyThread2(Table t) 

   {   

      this.t=t;   

   }   

   public void run() 

   {   

      t.printTable(100);   

   }   

}   

public class TestSynchronization2 

{   

   public static void main(String args[]) 

   {   

      Table obj = new Table();//only one object   

      MyThread1 t1=new MyThread1(obj);   

      MyThread2 t2=new MyThread2(obj);   

      t1.start();   

      t2.start();   

   }   

}   

Output:  

        5 

       10 

       15 

       20 

       25 

       100 

       200 

       300 

       400 

       500 



 

33                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 

3.9.1.2 By synchronized block 

➢ Synchronized block can be used to perform synchronization on any specific resource 

of the method. 

➢ Suppose you have 50 lines of code in your method, but you want to synchronize only 5 

lines, you can use synchronized block. 

➢ If you put all the codes of the method in the synchronized block, it will work same as 

the synchronized method. 

Points to remember for Synchronized block 

o Synchronized block is used to lock an object for any shared resource. 

o Scope of synchronized block is smaller than the method. 

Syntax to use synchronized block 

synchronized (object reference expression) {    

  //code block    

}  

3.9.1.3 Example of synchronized block 

Let's see the simple example of synchronized block. 

Program of synchronized block 

class Table 

{   

 void printTable(int n) 

 {   

     synchronized(this) 

  {//synchronized block   

   for(int i=1;i<=5;i++) 

   {   

    System.out.println(n*i);   

    try 

    {   

     Thread.sleep(400);   

    } 

    catch(Exception e) 

    { 

     System.out.println(e); 

    }   

        }   

     }   

  }//end of the method   

}   

class MyThread1 extends Thread 

{   

 Table t;   



 

34                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 MyThread1(Table t) 

 {   

  this.t=t;   

 }   

 public void run() 

 {   

  t.printTable(5);   

 }   

}   

class MyThread2 extends Thread 

{   

 Table t;   

 MyThread2(Table t) 

 {   

  this.t=t;   

 }   

 public void run() 

 {   

  t.printTable(100);   

 }   

}   

public class TestSynchronizedBlock1 

{   

 public static void main(String args[]) 

 {  

  Table obj = new Table();//only one object   

  MyThread1 t1=new MyThread1(obj);   

  MyThread2 t2=new MyThread2(obj);   

  t1.start();   

  t2.start();   

 }   

}    

 

Output: 

        5 

       10 

       15 

       20 

       25 

       100 

       200 

       300 

       400 

       500 

 

3.9.1.4 Static synchronization 

If you make any static method as synchronized, the lock will be on the class not on object.  



 

35                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 
Problem without static synchronization 

➢ Suppose there are two objects of a shared class(e.g. Table) named object1 and 

object2.In case of synchronized method and synchronized block there cannot be 

interference between t1 and t2 or t3 and t4 because t1 and t2 both refers to a common 

object that have a single lock. But there can be interference between t1 and t3 or t2 and 

t4 because t1 acquires another lock and t3 acquires another lock.I want no interference 

between t1 and t3 or t2 and t4.Static synchronization solves this problem.  

Example of static synchronization 

 

In this example we are applying synchronized keyword on the static method to perform static 

synchronization. 

class Table 

{   

 synchronized static void printTable(int n) 

 {   

  for(int i=1;i<=10;i++) 

  { 

   System.out.println(n*i);   

        try 

   {   

    Thread.sleep(400);   

        } 

   catch(Exception e) 

   {}   

     }   

  }   

}   



 

36                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

class MyThread1 extends Thread 

{   

 public void run() 

 {   

  Table.printTable(1);   

 }   

}   

class MyThread2 extends Thread 

{   

 public void run() 

 {   

  Table.printTable(10);   

 }   

}   

class MyThread3 extends Thread 

{   

 public void run() 

 {   

  Table.printTable(100);   

 }   

}   

class MyThread4 extends Thread 

{   

 public void run() 

 {   

  Table.printTable(1000);   

 }   

}   

public class TestSynchronization4 

{   

 public static void main(String t[]) 

 {   

  MyThread1 t1=new MyThread1();   



 

37                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

  MyThread2 t2=new MyThread2();   

  MyThread3 t3=new MyThread3();   

  MyThread4 t4=new MyThread4();   

  t1.start();   

  t2.start();   

  t3.start();   

  t4.start();   

 }   

}   

 

Output:  

       1 

       2 

       3 

       4 

       5 

       6 

       7 

       8 

       9 

       10 

       10        

       20 

       30 

       40 

       50 

       60 

       70 

       80 

       90 

       100 

       100 

       200 

       300 

       400 

       500 

       600 

       700 

       800 

       900 

       1000 

       1000 

       2000 

       3000 

       4000 



 

38                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

       5000 

       6000 

       7000 

       8000 

       9000 

       10000 

 

 

 

 

 

 

 

 

3.10 INTER THREAD COMMUNICATION 

➢ Inter-thread communication or Co-operation is all about allowing synchronized threads 

to communicate with each other. 

➢ Cooperation (Inter-thread communication) is a mechanism in which a thread is paused 

running in its critical section and another thread is allowed to enter (or lock) in the same 

critical section to be executed. It is implemented by following methods of Object class: 

o wait() 

o notify() 

o notifyAll() 

1) wait() method 

➢ Causes current thread to release the lock and wait until either another thread invokes 

the notify() method or the notifyAll() method for this object, or a specified amount of 

time has elapsed. 

The current thread must own this object's monitor, so it must be called from the synchronized 

method only otherwise it will throw exception. 

Method Description 

public final void wait()throws InterruptedException waits until object is notified. 

public final void wait(long timeout)throws 

InterruptedException 

waits for the specified amount of 

time. 

 

2) notify() method 

➢ Wakes up a single thread that is waiting on this object's monitor. If any threads are 

waiting on this object, one of them is chosen to be awakened. The choice is arbitrary 

and occurs at the discretion of the implementation.  



 

39                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

➢ Syntax:  

 

• public final void notify() 

 

3) notifyAll() method 

➢ Wakes up all threads that are waiting on this object's monitor.  

Syntax:  

public final void notifyAll() 

 
Fig 3. Process of inter-thread communication 

The point to point explanation of the above diagram is as follows: 

1. Threads enter to acquire lock. 

2. Lock is acquired by on thread. 

3. Now thread goes to waiting state if you call wait() method on the object. Otherwise it 

releases the lock and exits. 

4. If you call notify() or notifyAll() method, thread moves to the notified state (runnable 

state). 

5. Now thread is available to acquire lock. 

6. After completion of the task, thread releases the lock and exits the monitor state of the 

object. 

7. wait(), notify() and notifyAll() methods are defined in Object class not Thread class 

because they are related to lock and object has a lock. 

 
3.10.1 Difference between wait and sleep? 

Let's see the important differences between wait and sleep methods. 

 

wait() sleep() 



 

40                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

wait() method releases the lock sleep() method doesn't release the lock. 

is the method of Object class is the method of Thread class 

is the non-static method is the static method 

is the non-static method is the static method 

should be notified by notify() or notifyAll() 

methods 

after the specified amount of time, sleep is 

completed. 

 

3.10.2 Example of inter thread communication in java 

class Customer 

{   

 int amount=10000;   

 synchronized void withdraw(int amount) 

 {   

  System.out.println("going to withdraw...");   

    if(this.amount<amount) 

  {   

   System.out.println("Less balance; waiting for deposit...");   

   try 

   { 

    wait(); 

   } 

   catch(Exception e) 

   {}   

  }   

  this.amount-=amount;   

  System.out.println("withdraw completed...");   

 }   

   synchronized void deposit(int amount) 

 {   

  System.out.println("going to deposit...");   

  this.amount+=amount;   

  System.out.println("deposit completed... ");   

  notify();   



 

41                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 }   

}   

class Test 

{   

 public static void main (String args[]) 

 {   

  final Customer c=new Customer();   

  new Thread() 

  {   

   public void run() 

   { 

    c.withdraw(15000); 

   }   

  }.start();   

  new Thread() 

  {   

   public void run() 

   { 

    c.deposit(10000); 

   }   

  }.start();   

 } 

}   

Output:  

       going to withdraw... 

       Less balance; waiting for deposit... 

       going to deposit... 

       deposit completed... 

       withdraw completed 

3.11 JAVA THREAD SUSPEND() METHOD 

➢ The suspend() method of thread class puts the thread from running to waiting state.  

➢ This method is used if you want to stop the thread execution and start it again when a 

certain event occurs.  



 

42                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

➢ This method allows a thread to temporarily cease execution. The suspended thread can 

be resumed using the resume() method. 

➢ This method does not return any value. 

3.11.1 Syntax 

➢ public final void suspend()   

 

 

 

 

3.11.2 Example Program 

public class JavaSuspendExp extends Thread   

{     

    public void run()   

    {     

        for(int i=1; i<5; i++)   

        {     

            try   

            {   

                // thread to sleep for 500 milliseconds   

                 sleep(500);   

                 System.out.println(Thread.currentThread().getName());     

            } 

            catch(InterruptedException e) 

            { 

              System.out.println(e); 

             }     

            System.out.println(i);     

        }     

    }     

    public static void main(String args[])   

    {     

        // creating three threads    

        JavaSuspendExp t1=new JavaSuspendExp ();     



 

43                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

        JavaSuspendExp t2=new JavaSuspendExp ();    

        JavaSuspendExp t3=new JavaSuspendExp ();    

        // call run() method    

        t1.start();   

        t2.start();   

        // suspend t2 thread    

        t2.suspend();    

        // call run() method    

        t3.start();   

    }     

}   

OUTPUT 

 

3.12 JAVA THREAD RESUME() METHOD 

➢ The resume() method of thread class is only used with suspend() method. This method 

is used to resume a thread which was suspended using suspend() method. This method 

allows the suspended thread to start again. 

3.12.1 Syntax 

• public final void resume()   

3.12.2 Example Program 

public class JavaResumeExp extends Thread   

{     

    public void run()   

    {     



 

44                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

        for(int i=1; i<5; i++)   

        {     

            try   

            {   

                // thread to sleep for 500 milliseconds   

                 sleep(500);   

                 System.out.println(Thread.currentThread().getName());     

            }catch(InterruptedException e) 

            { 

            System.out.println(e); 

            }     

            System.out.println(i);     

        }     

    }     

    public static void main(String args[])   

    {     

        // creating three threads    

        JavaResumeExp t1=new JavaResumeExp ();     

        JavaResumeExp t2=new JavaResumeExp ();    

        JavaResumeExp t3=new JavaResumeExp ();    

        // call run() method    

        t1.start();   

        t2.start();   

        t2.suspend(); // suspend t2 thread    

        // call run() method    

        t3.start();    

        t2.resume(); // resume t2 thread   

    }     

}   

OUTPUT 

 



 

45                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 

 

 

3.13 JAVA THREAD STOP() METHOD 

➢ The stop() method of thread class terminates the thread execution. Once a thread is 

stopped, it cannot be restarted by start() method. 

➢ This method does not return any value. 

3.13.1 Syntax 

➢ public final void stop()   

➢ public final void stop(Throwable obj)   

• obj : The Throwable object to be thrown. 

3.13.2 Example Program 

public class JavaStopExp extends Thread   

{     

    public void run()   

    {     

        for(int i=1; i<5; i++)   

        {     

            try   

            {   

                // thread to sleep for 500 milliseconds   

                sleep(500);   

                System.out.println(Thread.currentThread().getName());     

            }catch(InterruptedException e) 



 

46                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

         { 

          System.out.println(e); 

          }     

            System.out.println(i);     

        }     

    }     

    public static void main(String args[])   

    {     

        // creating three threads    

        JavaStopExp t1=new JavaStopExp ();     

        JavaStopExp t2=new JavaStopExp ();    

        JavaStopExp t3=new JavaStopExp ();    

        // call run() method    

        t1.start();   

        t2.start();   

        // stop t3 thread    

        t3.stop();   

        System.out.println("Thread t3 is stopped");     

    }     

}   

 

OUTPUT 

 

 



 

47                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

3.14 Multithreading. Wrappers – Auto boxing. 

3.14.1 What are wrapper classes in Java? 

➢ A wrapper class in Java converts a primitive data type into class object. 

➢ Java is an object-oriented language that only supports pass by value. Therefore, wrapper 

class objects allow us to change the original passed value. These wrapper classes help 

with multithreading and synchronization because, in Java, multithreading only works 

with objects. 

 

 

Primitive Data Types and its corresponding Wrapper Classes 



 

48                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

 

 

 

 

 

 

3.14.1.1 Wrapper class Example: Primitive to Wrapper 

import java.lang.*; 

public class WrapperExample1 

{                                                                                                      

    public static void main(String args[]) 

    {  

        //Converting int into Integer  

        int a=20;  

        Integer i=Integer.valueOf(a);//converting int into Integer  

        Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally  



 

49                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

        System.out.println(a+" "+i+" "+j);  

    } 

} 

OUTPUT 

 
 

 

3.14.1.2 Wrapper class Example: Wrapper to Primitive 

 

import java.lang.*; 

public class WrapperExample2 

{    

    public static void main(String args[]) 

    {    

        //Converting Integer to int    

        Integer a=new Integer(3);    

        int i=a.intValue(); //unboxing i.e converting Integer to int  

        int j=a; //auto unboxing, now compiler will write a.intValue() internally    

        System.out.println(a+" "+i+" "+j);    

    } 

} 

 

 

OUTPUT 

 

 
 

 

3.14.2 AUTOBOXING 

 
➢ Automatic conversion of primitive types to the object of their corresponding wrapper 

classes is known as autoboxing. For example – conversion of int to Integer, long to 

Long, double to Double etc. 



 

50                                                  PREPARED BY – BASTIN ROGERS C -AP/CSE- SMCE 

CS3391-OOP-UNIT-3 

3.14.2.1 Java program to demonstrate Autoboxing 

import java.util.ArrayList; 

class Autoboxing 

{ 

    public static void main(String[] args) 

    { 

        char ch = 'a'; 

        // Autoboxing- primitive to Character object conversion 

        Character a = ch; 

        ArrayList<Integer> arrayList = new ArrayList<Integer>(); 

        // Autoboxing because ArrayList stores only objects 

        arrayList.add(25); 

        // printing the values from object 

        System.out.println(arrayList.get(0)); 

    } 

} 

OUTPUT 

 

 



 

1                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

                 UNIT IV EXCEPTION HANDLING AND I/O 

I/O Basics – Reading and Writing Console I/O – Reading and Writing Files. Generics: Generic 

Programming – Generic classes – Generic Methods – Bounded Types – Restrictions and 

Limitations. Strings: Basic String class, methods and String Buffer Class.                           

4.1   INPUT / OUTPUT BASICS 

➢ Java I/O (Input and Output) is used to process the input and produce the output.  

Java uses the concept of stream to make I/O operation fast. The java.io package 

contains all the classes required for input and output operations.  We can 

perform file handling in java by Java I/O API. 

4.1.1 STREAM 

A stream can be defined as a sequence of data. There are two kinds of Streams − 

• InputStream − The InputStream is used to read data from a source. 

• OutputStream − The OutputStream is used for writing data to a destination. 

In java, 3 streams are created for us automatically. All these streams are attached with console. 

 

1) System.out: standard output stream 

2) System.in: standard input stream 

3) System.err: standard error stream 

Let's see the code to print output and error message to the console. 

System.out.println("simple message");   

System.err.println("error message");   

Let's see the code to get input from console. 

int i=System.in.read();//returns ASCII code of 1st character   

System.out.println((char)i); //will print the character   

OutputStream vs InputStream 

The explanation of OutputStream and InputStream classes are given below: 

OutputStream 

➢ Java application uses an output stream to write data to a destination, it may be a file, 

an array, peripheral device or socket. 



 

2                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

InputStream 

➢ Java application uses an input stream to read data from a source, it may be a file, an 

array, peripheral device or socket. 

OutputStream class 

➢ OutputStream class is an abstract class. It is the super class of all classes 

representing an output stream of bytes. An output stream accepts output bytes and 

sends them to some sink. 

 

Useful Methods of OutputStream 

Method Description 

1)public void write(int)throws 

IOException 

is used to write a byte to the current output 

stream. 

2) public void write(byte[])throws 

IOException 

is used to write an array of byte to the 

current output stream. 

3) public void flush()throws 

IOException 

flushes the current output stream. 

4) public void close()throws 

IOException 

is used to close the current output stream. 

 

OutputStream Hierarchy 

 

 



 

3                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

InputStream class 

➢ InputStream class is an abstract class. It is the super class of all classes representing 

an input stream of bytes. 

Useful Methods of InputStream 

Method Description 

1) public abstract int 

read()throws IOException 

reads the next byte of data from the input stream. 

It returns -1 at the end of file. 

2) public int available()throws 

IOException 

returns an estimate of the number of bytes that 

can be read from the current input stream. 

3) public void close()throws 

IOException 

is used to close the current input stream. 

InputStream Hierarchy 

 

4.1.2 Java FileOutputStream Class 

➢ Java FileOutputStream is an output stream used for writing data to a file. If you 

have to write primitive values into a file, use FileOutputStream class.  

➢ You can write byte-oriented as well as character-oriented data through 

FileOutputStream class. But, for character-oriented data, it is preferred to use 

FileWriter than FileOutputStream. 

FileOutputStream Class Declaration 

Let's see the declaration for Java.io.FileOutputStream class: 

public class FileOutputStream extends OutputStream   



 

4                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

 

FileOutputStream Class Methods 

Method Description 

protected void finalize() It is used to clean up the connection with the 

file output stream. 

void write(byte[] ary) It is used to write ary.length bytes from the 

byte array to the file output stream. 

void write(byte[] ary, int off, int len) It is used to write len bytes from the byte 

array starting at offset off to the file output 

stream. 

void write(int b) It is used to write the specified byte to the 

file output stream. 

FileChannel getChannel() It is used to return the file channel object 

associated with the file output stream. 

FileDescriptor getFD() It is used to return the file descriptor 

associated with the stream. 

void close() It is used to closes the file output stream. 

 

Java FileOutputStream Example : write byte 

import java.io.* ; 

class File1 

{   

public static void main(String args[]) 

{     

FileOutputStream fout=null; 

byte b1[]={'A','B'}; 

           try{     

             fout=new FileOutputStream("testout.txt");                   



 

5                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

             fout.write(b1);     

             fout.close();     

             System.out.println("success...");     

            } 

catch(Exception e) 

{ 

System.out.println(e); 

}     

}     

}   

 

Output: 

Success... 

The content of a text file testout.txt is set with the data AB. 

testout.txt 

AB 

 

4.1.3 Java FileInputStream Class 

➢ Java FileInputStream class obtains input bytes from a file. It is used for reading 

byte-oriented data (streams of raw bytes) such as image data, audio, video etc. You 

can also read character-stream data. But, for reading streams of characters, it is 

recommended to use FileReader class. 

Java FileInputStream Class Declaration 

Let's see the declaration for java.io.FileInputStream class: 

public class FileInputStream extends InputStream   

Java FileInputStream Class Methods 

Method Description 

int available() It is used to return the estimated number of bytes that can 

be read from the input stream. 

int read() It is used to read the byte of data from the input stream. 

int read(byte[] b) It is used to read up to b.length bytes of data from the input 

stream. 



 

6                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

int read(byte[] b, int 

off, int len) 

It is used to read up to len bytes of data from the input 

stream. 

long skip(long x) It is used to skip over and discards x bytes of data from the 

input stream. 

FileChannel 

getChannel() 

It is used to return the unique FileChannel object 

associated with the file input stream. 

FileDescriptor 

getFD() 

It is used to return the FileDescriptor object. 

protected void 

finalize() 

It is used to ensure that the close method is call when there 

is no more reference to the file input stream. 

void close() It is used to closes the stream. 

 

4.1.4 Java FileInputStream example: read all characters 

import java.io.* ; 

class File2 

{   

public static void main(String args[]) 

{     

FileInputStream fin=null; 

           try 

             {     

             fin=new FileInputStream("testout.txt");                   

             int b; 

             while((b=fin.read())!=-1)  

               {       

                System.out.println((char)b);  

                }    

              fin.close(); 

            } 

         catch(Exception e) 



 

7                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

            { 

            System.out.println(e); 

            }     

}     

}   

Output: 

Contents in testout.txt will be displayed 

4.1.4 BYTE STREAMS AND CHARACTER STREAMS 

BYTE STREAMS 

Java ByteArrayOutputStream Class 

➢ Java ByteArrayOutputStream class is used to write common data into multiple files. 

In this stream, the data is written into a byte array which can be written to multiple 

streams later.  

➢ The ByteArrayOutputStream holds a copy of data and forwards it to multiple 

streams. The buffer of ByteArrayOutputStream automatically grows according to 

data. 

Java ByteArrayOutputStream Class Declaration 

Let's see the declaration for Java.io.ByteArrayOutputStream class: 

public class ByteArrayOutputStream extends OutputStream   

Java ByteArrayOutputStream Class Constructors 

Constructor Description 

ByteArrayOutputStream() Creates a new byte array output stream with the initial 

capacity of 32 bytes, though its size increases if 

necessary. 

ByteArrayOutputStream(int 

size) 

Creates a new byte array output stream, with a buffer 

capacity of the specified size, in bytes. 

Java ByteArrayOutputStream class methods 

Method Description 

int size() It is used to returns the current size of a buffer. 



 

8                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

byte[] toByteArray() It is used to create a newly allocated byte array. 

String toString() It is used for converting the content into a string decoding 

bytes using a platform default character set. 

String toString(String 

charsetName) 

It is used for converting the content into a string decoding 

bytes using a specified charsetName. 

void write(int b) It is used for writing the byte specified to the byte array 

output stream. 

void write(byte[] b, int off, 

int len 

It is used for writing len bytes from specified byte array 

starting from the offset off to the byte array output stream. 

void writeTo(OutputStream 

out) 

It is used for writing the complete content of a byte array 

output stream to the specified output stream. 

void reset() It is used to reset the count field of a byte array output 

stream to zero value. 

void close() It is used to close the ByteArrayOutputStream. 

 

Example of Java ByteArrayOutputStream 

➢ Let's see a simple example of java ByteArrayOutputStream class to write common 

data into 2 files: f1.txt and f2.txt. 

Example Program 

import java.io.*;   

public class DataStreamExample  

{   

public static void main(String args[])throws Exception 

{     

     FileOutputStream fout1=new FileOutputStream("D:\\f1.txt");     

      FileOutputStream fout2=new FileOutputStream("D:\\f2.txt");     

      ByteArrayOutputStream bout=new ByteArrayOutputStream();     

      bout.write(65);     

      bout.writeTo(fout1);     



 

9                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

      bout.writeTo(fout2);     

      bout.flush();     

      bout.close();//has no effect     

      System.out.println("Success...");     

     }     

          }    

Output: 

Success... 

f1.txt: 

A 

f2.txt: 

A 

                

 

 

4.2 READING AND WRITING CONSOLE I/O 

4.2.1 Java Console Class 

➢ The Java Console is a predefined class that is available in io package, it is used to 

get user input at run time. It provides methods to read texts and passwords.  If you 

read password using Console class, it will not be displayed to the user. 

➢ The java.io.Console class is attached with system console internally.  

➢ Let's see a simple example to read text from console. 

String text=System.console().readLine();     

System.out.println("Text is: "+text);    

 

  

 



 

10                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

Java Console Class Declaration 

Let's see the declaration for Java.io.Console class: 

public final class Console extends Object implements Flushable   

 

Java Console Class Methods 

Method Description 

Reader reader() It is used to retrieve the reader object 

associated with the console 

String readLine() It is used to read a single line of text from the 

console. 

String readLine(String fmt, 

Object... args) 

It provides a formatted prompt then reads the 

single line of text from the console. 

char[] readPassword() It is used to read password that is not being 

displayed on the console. 

char[] readPassword(String 

fmt, Object... args) 

It provides a formatted prompt then reads the 

password that is not being displayed on the 

console. 

Console format(String fmt, 

Object... args) 

It is used to write a formatted string to the 

console output stream. 

Console printf(String format, 

Object... args) 

It is used to write a string to the console output 

stream. 

PrintWriter writer() It is used to retrieve the PrintWriter object 

associated with the console. 

void flush() It is used to flushes the console. 

 

 

 



 

11                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

How to get the object of Console 

System class provides a static method console() that returns the singleton instance of Console 

class. 

public static Console console() 

{}    

Let's see the code to get the instance of Console class. 

Console c=System.console();   

Java Console Example to Read Username and Password 

import java.io.*; 

class Consoleexp 

  { 

   public static void main(String arg[]) 

     { 

      String str ; char ch[]; 

      Console C=System.console(); 

      System.out.println("Enter UserName:"); 

      str=C.readLine(); 

      System.out.println("Enter Password:"); 

      ch=C.readPassword(); 

      String S=String.valueOf(ch); 

      System.out.println("UserName:" +str); 

      System.out.println("Password:" +S); 

     } 

} 

 

 



 

12                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

Output 

  

 

4.2.2 Using Buffered Reader Class 

➢ Java BufferedReader class is used to read the text from a character-based input stream. 

It can be used to read data line by line by readLine() method. 

➢ InputStreamReader class performs two tasks 

• Read input stream of keyboard. 

• Convert byte streams to character streams. 

ExampleProgram: Reading data from console by InputStreamReader and 

BufferedReader 

import java.io.*; 

class Bufferreader   

   { 

    public static void main(String arg[]) throws IOException 

        { 

          BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); 

          System.out.println("Enter UserName:"); 

          String name=br.readLine(); 

          System.out.println("Welcome " +name); 

          } 

  } 

 

 

 



 

13                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

Output 

 

4.3 READING AND WRITING FILES 

4.3.1 Java Reader 

The FileReader class of the java.io package can be used to read data (in characters) 

from files.  

Fields 

Modifier and Type Field Description 

protected Object lock The object used to synchronize operations on 

this stream. 

Constructor 

Modifier Constructor Description 

Protected Reader() It creates a new character-stream reader 

whose critical sections will synchronize on 

the reader itself. 

Protected Reader(Object 

lock) 

It creates a new character-stream reader 

whose critical sections will synchronize on 

the given object. 

Methods 

➢ read() - reads a single character from the reader 

➢ read(char[] array) - reads the characters from the reader and stores in the specified array 

➢ read(char[] array, int start, int length) - reads the number of characters equal to length 

from the reader and stores in the specified array starting from the position start 

 

 



 

14                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

Example 

import java.io.*;   

class Reader  

{   

public static void main(String[] args)  

{   

File infile=new File("a2.txt"); 

FileReader fr=null; 

try  

{   

 fr=new FileReader(infile); 

 int ch;   

 while ((ch=fr.read())!= -1) 

    {   

    System.out.print((char)ch);   

    } 

 }  

catch (Exception e)  

{   

 System.out.println(e);   

}      

 }  

 }   

 

OUTPUT 

 
 

4.3.2 JAVA FILEWRITER CLASS 

Java FileWriter class is used to write character-oriented data to a file. It is character-

oriented class which is used for file handling in java. 

Unlike FileOutputStream class, you don't need to convert string into byte array because it 

provides method to write string directly. 



 

15                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

Java FileWriter class declaration 

Let's see the declaration for Java.io.FileWriter class: 

public class FileWriter extends OutputStreamWriter   

Constructors of FileWriter Class 

Constructor Description 

FileWriter(String file) Creates a new file. It gets file name in string. 

FileWriter(File file) Creates a new file. It gets file name in File object. 

 

Methods of FileWriter Class 

Method Description 

void write(String text) It is used to write the string into FileWriter. 

void write(char c) It is used to write the char into FileWriter. 

void write(char[] c) It is used to write char array into FileWriter. 

void flush() It is used to flushes the data of FileWriter. 

void close() It is used to close the FileWriter. 

 

Java FileWriter Example 

In this example, we are writing the data in the file testout.txt using Java FileWriter class. 

import java.io.*;   

class Writer 

{   

 public static void main(String args[]) 

{ 

File outfile=new File("A2.txt"); 

FileWriter fout=null;     

try 

{     



 

16                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

fout=new FileWriter(outfile);     

String s="WELCOME TO JAVA"; 

fout.write(s); 

fout.close();         

} 

catch(Exception e) 

{ 

System.out.println(e); 

}     

 System.out.println("Success...");     

 }     

}     

Output: 

Success... 

A2.txt: 

WELCOME TO JAVA  

4.4 Generic programming 

 

➢ Java Generic methods and generic classes enable programmers to specify, with a single 

method declaration, a set of related methods, or with a single class declaration, a set of 

related types, respectively. 

➢ Generics also provide compile-time type safety that allows programmers to catch 

invalid types at compile time. 

➢ Using Java Generic concept, we might write a generic method for sorting an array of 

objects, then invoke the generic method with Integer arrays, Double arrays, String 

arrays and so on, to sort the array elements. 

 

4.4.1 Generic Methods 

 

➢ We can write a single generic method declaration that can be called with arguments of 

different types. Based on the types of the arguments passed to the generic method, the 

compiler handles each method call appropriately. Following are the rules to define 

Generic Methods − 



 

17                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

• All generic method declarations have a type parameter section delimited by 

angle brackets (< and >) that precedes the method's return type ( < E > in the 

next example). 

• Each type parameter section contains one or more type parameters separated by 

commas. A type parameter, also known as a type variable, is an identifier that 

specifies a generic type name. 

• The type parameters can be used to declare the return type and act as 

placeholders for the types of the arguments passed to the generic method, which 

are known as actual type arguments. 

• A generic method's body is declared like that of any other method. Note that 

type parameters can represent only reference types, not primitive types (like int, 

double and char). 

Example 

 

➢ Following example illustrates how we can print an array of different type using a single 

Generic method − 

public class GenericMethod 

   {   

    public static < E > void printArray(E[] elements)  

        {   

        for ( E element : elements) 

         {           

            System.out.println(element );   

         }   

         System.out.println();   

    }   

    public static void main( String args[] )  

    {   

        Integer[] intArray = { 10, 20, 30, 40, 50 };   

        Character[] charArray = { 'W','E','L','C','O','M','E' };  

        Double[] doubleArray={5.10,8.10,76.89,45.67,2.87};  

        System.out.println( "Printing Integer Array" );   

        printArray( intArray  );    

        System.out.println( "Printing Character Array" );   



 

18                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

        printArray( charArray );    

        System.out.println( "Printing Double Array" );   

        printArray( doubleArray );    

    }    

}   

 

 

 

 

 

 

Output 

 

 

 



 

19                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

 

 

4.4.2 Bounded Type Parameters 

 

➢ Whenever you want to restrict the type parameter to subtypes of a particular class you 

can use the bounded type parameter.  

➢ If you just specify a type (class) as bounded parameter, only sub types of that particular 

class are accepted by the current generic class. These are known as bounded-types in 

generics in Java.  

➢ For example, a method that operates on numbers might only want to accept instances 

of Number or its subclasses. This is what bounded type parameters are for. 

4.4.2.1 Defining bounded-types for class 

➢ You can declare a bound parameter just by extending the required class with the type-

parameter, within the angular braces as 

➢ Syntax 

class Sample <T extends Number> 

Example 

 

➢ In the following Java example, the generic class Sample restricts the type parameter to 

the sub classes of the Number classes using the bounded parameter.  

 class Sample <T extends Number> 

  { 

   T data; 

   Sample(T data) 

  { 

      this.data = data; 

   } 

   public void display()  

  { 

      System.out.println("Data value is: "+this.data); 

   } 

} 

public class BoundsExample  

  { 

   public static void main(String args[])  



 

20                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

     { 

      Sample<Integer> obj1 = new Sample<Integer>(20); 

      obj1.display(); 

      Sample<Double> obj2 = new Sample<Double>(20.22d); 

      obj2.display(); 

      Sample<Float> obj3 = new Sample<Float>(125.332f); 

      obj3.display(); 

   } 

} 

Output 

 
 

4.4.3 Generic Classes 

➢ A Generic class simply means that the items or functions in that class can be generalized 

with the parameter(example T) to specify that we can add any type as a parameter in 

place of T like Integer, Character, String, Double or any other user-defined type. 

Example Program 

 

public class Area<T>  

   { 

    // T is the Datatype like String, 

    // Integer of which Parameter type, 

    // the class Area is of 

    private T t; 

    public void add(T t) 

    { 

        // this.t specify the t variable inside 

        // the Area Class whereas the right hand 

        // side t simply specify the value as the 

        // parameter of the function add() 

        this.t = t; 



 

21                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

    } 

    public T get()  

    {  

    return t;  

    } 

    public void getArea()  

    { 

    } 

    public static void main(String[] args) 

    { 

        // Object of generic class Area with parameter Type 

        // as Integer 

        Area<Integer> rectangle = new Area<Integer>(); 

        // Object of generic class Area with parameter Type 

        // as Double 

        Area<Double> circle = new Area<Double>(); 

        rectangle.add(10); 

        circle.add(2.5); 

        System.out.println(rectangle.get()); 

        System.out.println(circle.get()); 

    } 

} 

Output 

 
 

4.4.5 Restrictions and limitations 

To use Java generics effectively, we must consider the following restrictions: 

• Cannot Instantiate Generic Types with Primitive Types 

• Cannot Create Instances of Type Parameters 

• Cannot Declare Static Fields Whose Types are Type Parameters 

• Cannot Use Casts or instanceof With Parameterized Types 

• Cannot Create Arrays of Parameterized Types 

https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#instantiate
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#createObjects
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#createStatic
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#cannotCast
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#createArrays


 

22                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

• Cannot Create, Catch, or Throw Objects of Parameterized Types 

• Cannot Overload a Method Where the Formal Parameter Types of Each Overload Erase 

to the Same Raw Type 

 

4.9.1 Cannot Instantiate Generic Types with Primitive Types 

Consider the following parameterized type: 

class Pair<K, V> { 

    private K key; 

    private V value; 

    public Pair(K key, V value) { 

        this.key = key; 

        this.value = value; 

    } 

    // ... 

} 

When creating a Pair object, you cannot substitute a primitive type for the type parameter K or 

V: 

Pair<int, char> p = new Pair<>(8, 'a');  // compile-time error 

You can substitute only non-primitive types for the type parameters K and V: 

Pair<Integer, Character> p = new Pair<>(8, 'a'); 

Note that the Java compiler autoboxes 8 to Integer.valueOf(8) and 'a' to Character('a'): 

Pair<Integer, Character> p = new Pair<>(Integer.valueOf(8), new Character('a')); 

 

4.9.2 Cannot Create Instances of Type Parameters 

We cannot create an instance of a type parameter. For example, the following code causes a 

compile-time error: 

public static <E> void append(List<E> list) { 

    E elem = new E();  // compile-time error 

    list.add(elem); 

} 

As a workaround, you can create an object of a type parameter through reflection: 

public static <E> void append(List<E> list, Class<E> cls) throws Exception { 

    E elem = cls.newInstance();   // OK 

    list.add(elem); 

} 

https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#cannotCatch
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#cannotOverload
https://docs.oracle.com/javase/tutorial/java/generics/restrictions.html#cannotOverload


 

23                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

We can invoke the append method as follows: 

List<String> ls = new ArrayList<>(); 

append(ls, String.class); 

 

4.9.3 Cannot Declare Static Fields Whose Types are Type Parameters 

A class's static field is a class-level variable shared by all non-static objects of the class. Hence, 

static fields of type parameters are not allowed. Consider the following class: 

public class MobileDevice<T> { 

    private static T os; 

 

    // ... 

} 

If static fields of type parameters were allowed, then the following code would be confused: 

MobileDevice<Smartphone> phone = new MobileDevice<>(); 

MobileDevice<Pager> pager = new MobileDevice<>(); 

MobileDevice<TabletPC> pc = new MobileDevice<>(); 

Because the static field os is shared by phone, pager, and pc, what is the actual type of os? It 

cannot be Smartphone, Pager, and TabletPC at the same time. You cannot, therefore, create 

static fields of type parameters. 

 

4.9.4 Cannot Use Casts or instanceof with Parameterized Types 

Because the Java compiler erases all type parameters in generic code, you cannot verify which 

parameterized type for a generic type is being used at runtime: 

public static <E> void rtti(List<E> list) { 

    if (list instanceof ArrayList<Integer>) {  // compile-time error 

        // ... 

    } 

} 

The set of parameterized types passed to the rtti method is: 

S = { ArrayList<Integer>, ArrayList<String> LinkedList<Character>, ... } 

The runtime does not keep track of type parameters, so it cannot tell the difference between an 

ArrayList<Integer> and an ArrayList<String>. The most you can do is to use an unbounded 

wildcard to verify that the list is an ArrayList: 

public static void rtti(List<?> list) { 



 

24                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

    if (list instanceof ArrayList<?>) {  // OK; instanceof requires a reifiable type 

        // ... 

    } 

} 

Typically, you cannot cast to a parameterized type unless it is parameterized by unbounded 

wildcards. For example: 

List<Integer> li = new ArrayList<>(); 

List<Number>  ln = (List<Number>) li;  // compile-time error 

However, in some cases the compiler knows that a type parameter is always valid and allows 

the cast. For example: 

List<String> l1 = ...; 

ArrayList<String> l2 = (ArrayList<String>)l1;  // OK 

4.9.5 Cannot Create Arrays of Parameterized Types 

You cannot create arrays of parameterized types. For example, the following code does not 

compile: 

List<Integer>[] arrayOfLists = new List<Integer>[2];  // compile-time error 

The following code illustrates what happens when different types are inserted into an array: 

Object[] strings = new String[2]; 

strings[0] = "hi";   // OK 

strings[1] = 100;    // An ArrayStoreException is thrown. 

If you try the same thing with a generic list, there would be a problem: 

Object[] stringLists = new List<String>[];  // compiler error, but pretend it's allowed 

stringLists[0] = new ArrayList<String>();   // OK 

stringLists[1] = new ArrayList<Integer>();  // An ArrayStoreException should be thrown, 

                                            // but the runtime can't detect it. 

If arrays of parameterized lists were allowed, the previous code would fail to throw the desired 

ArrayStoreException. 

 

4.9.6 Cannot Create, Catch, or Throw Objects of Parameterized Types 

A generic class cannot extend the Throwable class directly or indirectly. For example, the 

following classes will not compile: 

// Extends Throwable indirectly 

class MathException<T> extends Exception { /* ... */ }    // compile-time error 

// Extends Throwable directly 



 

25                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

class QueueFullException<T> extends Throwable { /* ... */ // compile-time error 

A method cannot catch an instance of a type parameter: 

public static <T extends Exception, J> void execute(List<J> jobs) { 

    try { 

        for (J job : jobs) 

            // ... 

    } catch (T e) {   // compile-time error 

        // ... 

    } 

} 

You can, however, use a type parameter in a throws clause: 

class Parser<T extends Exception> { 

    public void parse(File file) throws T {     // OK 

        // ... 

    } 

} 

 

4.9.7 Cannot Overload a Method Where the Formal Parameter Types of Each Overload 

Erase to the Same Raw Type 

A class cannot have two overloaded methods that will have the same signature after type 

erasure. 

public class Example { 

    public void print(Set<String> strSet) { } 

    public void print(Set<Integer> intSet) { } 

} 

The overloads would all share the same classfile representation and will generate a compile-

time error. 

 

4.6 Strings 

In java, string is basically an object that represents sequence of char values. An array of 

characters works same as java string. For example: 

char[] ch={'j','a','v','a','t','p','o','i','n','t'};   

String s=new String(ch);   

is same as: 

String s="javatpoint";   



 

26                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

 Java String class provides a lot of methods to perform operations on string such as 

compare(), concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc. 

Thejava.lang.String class implements Serializable, Comparable and CharSequence interfaces. 

 
CharSequence Interface 

 The CharSequence interface is used to represent sequence of characters. It is 

implemented by String, StringBuffer and StringBuilder classes. It means, we can create string 

in java by using these 3 classes. 

 
 The java String is immutable i.e. it cannot be changed. Whenever we change any string, 

a new instance is created. For mutable string, you can use StringBuffer and StringBuilder 

classes. 

There are two ways to create String object: 

1. By string literal 

2. By new keyword 

 

 

4.6.1 By String literal 

 

Java String literal is created by using double quotes. For Example: 

1. String s="welcome";   

Each time you create a string literal, the JVM checks the string constant pool first. If the string 

already exists in the pool, a reference to the pooled instance is returned. If string doesn't exist 

in the pool, a new string instance is created and placed in the pool. For example: 



 

27                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

String s1="Welcome";   

String s2="Welcome";//will not create new instance   

 
 In the above example only one object will be created. Firstly JVM will not find any 

string object with the value "Welcome" in string constant pool, so it will create a new object. 

After that it will find the string with the value "Welcome" in the pool, it will not create new 

object but will return the reference to the same instance. 

4.6.2 By new keyword 

String s=new String("Welcome");//creates two objects and one reference variable   

In such case, JVM will create a new string object in normal(non-pool) heap memory and the 

literal "Welcome" will be placed in the string constant pool. The variable s will refer to the 

object in heap(non-pool). 

Example 

public class StringExample 

{   

 public static void main(String args[]) 

 {   

  String s1="java";//creating string by java string literal   

  char ch[]={'s','t','r','i','n','g','s'};   

  String s2=new String(ch);//converting char array to string   

  String s3=new String("example");//creating java string by new keyword   

  System.out.println(s1);   

  System.out.println(s2);   

  System.out.println(s3);   

 } 



 

28                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

} 

 

Output   

 
 

4.6.3 String methods 

 

Method Description 

char charAt(int index)  returns char value for the particular index 

int length() returns string length 

static String format(String format, 

Object... args)  

returns formatted string 

static String format(Locale l, String 

format, Object... args)  

returns formatted string with given locale 

String substring(int beginIndex)  returns substring for given begin index 

String substring(int beginIndex, int 

endIndex)  

returns substring for given begin index and end 

index 

boolean contains(CharSequence s)  returns true or false after matching the sequence of 

char value 

static String join(CharSequence 

delimiter, CharSequence... elements)  

returns a joined string 

static String join(CharSequence 

delimiter, Iterable<? extends 

CharSequence> elements)  

returns a joined string 

boolean equals(Object another)  checks the equality of string with object 

boolean isEmpty()  checks if string is empty 

String concat(String str)  concatinates specified string 

String replace(char old, char new)  replaces all occurrences of specified char value 

String replace(CharSequence old, 

CharSequence new)  

replaces all occurrences of specified 

CharSequence 

https://www.javatpoint.com/java-string-charat
https://www.javatpoint.com/java-string-length
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-format
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-substring
https://www.javatpoint.com/java-string-contains
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-join
https://www.javatpoint.com/java-string-equals
https://www.javatpoint.com/java-string-isempty
https://www.javatpoint.com/java-string-concat
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace
https://www.javatpoint.com/java-string-replace


 

29                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

static String equalsIgnoreCase(String 

another)  

compares another string. It doesn't check case. 

String[] split(String regex) returns splitted string matching regex 

String[] split(String regex, int limit) returns splitted string matching regex and limit 

String intern() returns interned string 

int indexOf(int ch)  returns specified char value index 

int indexOf(int ch, int fromIndex)  returns specified char value index starting with 

given index 

int indexOf(String substring) returns specified substring index 

int indexOf(String substring, int 

fromIndex)  

returns specified substring index starting with 

given index 

String toLowerCase()  returns string in lowercase. 

String toLowerCase(Locale l)  returns string in lowercase using specified locale. 

String toUpperCase()  returns string in uppercase. 

String toUpperCase(Locale l)  returns string in uppercase using specified locale. 

String trim() removes beginning and ending spaces of this 

string. 

static String valueOf(int value)  converts given type into string. It is overloaded. 

 

 

4.6.4 JAVA STRINGBUFFER CLASS 

➢ Java StringBuffer class is used to create mutable (modifiable) String objects. The 

StringBuffer class in Java is the same as String class except it is mutable i.e. it can be 

changed. 

IMPORTANT CONSTRUCTORS OF STRINGBUFFER CLASS 

 

Constructor Description 

StringBuffer() It creates an empty String buffer with the initial capacity of 16. 

StringBuffer(String str) It creates a String buffer with the specified string.. 

https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-equalsignorecase
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-split
https://www.javatpoint.com/java-string-intern
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-indexof
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-tolowercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-touppercase
https://www.javatpoint.com/java-string-trim
https://www.javatpoint.com/java-string-valueof


 

30                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

StringBuffer(int capacity) It creates an empty String buffer with the specified capacity as length. 

 

IMPORTANT METHODS OF STRINGBUFFER CLASS 

Modifier and 

Type 

Method Description 

public 

synchronized 

StringBuffer 

append(String s) It is used to append the specified string with this 

string. The append() method is overloaded like 

append(char), append(boolean), append(int), 

append(float), append(double) etc. 

public 

synchronized 

StringBuffer 

insert(int offset, String 

s) 

It is used to insert the specified string with this 

string at the specified position. The insert() 

method is overloaded like insert(int, char), 

insert(int, boolean), insert(int, int), insert(int, 

float), insert(int, double) etc. 

public 

synchronized 

StringBuffer 

replace(int startIndex, 

int endIndex, String str) 

It is used to replace the string from specified 

startIndex and endIndex. 

public 

synchronized 

StringBuffer 

delete(int startIndex, 

int endIndex) 

It is used to delete the string from specified 

startIndex and endIndex. 

public 

synchronized 

StringBuffer 

reverse() is used to reverse the string. 

public int capacity() It is used to return the current capacity. 

public void ensureCapacity(int 

minimumCapacity) 

It is used to ensure the capacity at least equal to 

the given minimum. 

public char charAt(int index) It is used to return the character at the specified 

position. 

public int length() It is used to return the length of the string i.e. 

total number of characters. 



 

31                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

public String substring(int 

beginIndex) 

It is used to return the substring from the 

specified beginIndex. 

public String substring(int 

beginIndex,int 

endIndex) 

It is used to return the substring from the 

specified beginIndex and endIndex. 

WHAT IS A MUTABLE STRING? 

➢ A String that can be modified or changed is known as mutable String. StringBuffer and 

StringBuilder classes are used for creating mutable strings. 

STRING BUFFER CLASS METHODS 

1) StringBuffer Class append() Method 

➢ The append() method concatenates the given argument with this String. 

Example Program 

class StringBufferExample 

{   

public static void main(String args[]) 

{   

StringBuffer sb=new StringBuffer("Hello ");   

sb.append("Java"); //now original string is changed   

System.out.println(sb); //prints Hello Java   

}   

}   

 

OUTPUT 

Hello Java 

 



 

32                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

2. StringBuffer insert() Method 

➢ The insert() method inserts the given String with this string at the given position. 

Example Program 

class StringBufferExample2{   

public static void main(String args[]) 

{   

StringBuffer sb=new StringBuffer("Hello ");   

sb.insert(1,"Java");//now original string is changed   

System.out.println(sb);//prints HJavaello   

}   

} 

OUTPUT 

HJavaello 

3. StringBuffer replace() Method 

➢ The replace() method replaces the given String from the specified beginIndex and 

endIndex. 

Example Program 

 

class StringBufferExample3{   

public static void main(String args[]) 

{   

StringBuffer sb=new StringBuffer("Hello");   

sb.replace(1,3,"Java");   

System.out.println(sb); //prints HJavalo   

}   

}   

 

 



 

33                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

OUTPUT 

HJavalo  
 

4. StringBuffer delete() Method 

➢ The delete() method of the StringBuffer class deletes the String from the specified 

beginIndex to endIndex. 

Example Program 

class StringBufferExample4{   

public static void main(String args[]) 

{   

StringBuffer sb=new StringBuffer("Hello");   

sb.delete(1,3);   

System.out.println(sb); //prints Hlo   

}   

}   

OUTPUT 

Hlo 

5.StringBuffer reverse() Method 

➢ The reverse() method of the StringBuilder class reverses the current String. 

Example Program 

class StringBufferExample5{   

public static void main(String args[]){   

StringBuffer sb=new StringBuffer("Hello");   

sb.reverse();   

System.out.println(sb);// prints olleH   

}   

}   

OUTPUT 

olleH 

6.StringBuffer capacity() Method 

➢ The capacity() method of the StringBuffer class returns the current capacity of the 

buffer.  



 

34                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

➢ The default capacity of the buffer is 16. If the number of character increases from its 

current capacity, it increases the capacity by (oldcapacity*2)+2. For example if your 

current capacity is 16, it will be (16*2)+2=34. 

Example Program 

class StringBufferExample6{   

public static void main(String args[]) 

{   

StringBuffer sb=new StringBuffer();   

System.out.println(sb.capacity());//default 16   

sb.append("Hello");   

System.out.println(sb.capacity());//now 16   

sb.append("java is my favourite language");   

System.out.println(sb.capacity());  //now (16*2)+2=34 i.e (oldcapacity*2)+2   

}   

}   

Output: 

16 

16 

34 

7.StringBuffer ensureCapacity() method 

➢ The ensureCapacity() method of the StringBuffer class ensures that the given capacity 

is the minimum to the current capacity. If it is greater than the current capacity, it 

increases the capacity by (oldcapacity*2)+2. For example if your current capacity is 16, 

it will be (16*2)+2=34. 

 



 

35                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

Example Program 

class StringBufferExample7 

{   

public static void main(String args[]) 

{   

StringBuffer sb=new StringBuffer();   

System.out.println(sb.capacity());  //default 16   

sb.append("Hello");   

System.out.println(sb.capacity());  //now 16   

sb.append("java is my favourite language");   

System.out.println(sb.capacity());  //now (16*2)+2=34 i.e (oldcapacity*2)+2   

sb.ensureCapacity(10); //now no change   

System.out.println(sb.capacity()); //now 34   

sb.ensureCapacity(50);  //now (34*2)+2   

System.out.println(sb.capacity());  //now 70   

}   

}   

Output 

 

 

 



 

36                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-4 CS3391-OOP 

Difference between String and StringBuffer 

 

 

 

 

 

 

 

 



 

1                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

UNIT V 

JAVAFX EVENT HANDLING, CONTROLS AND 

COMPONENTS 

JAVAFX Events and Controls: Event Basics – Handling Key and Mouse 

Events. Controls: Checkbox, ToggleButton – RadioButtons – ListView – 

ComboBox – ChoiceBox – Text Controls – ScrollPane. Layouts – 

FlowPane – HBox and VBox – BorderPane – StackPane – GridPane. 

Menus – Basics – Menu – Menu bars – MenuItem. 

What is JavaFX? 

➢ JavaFX is a Java library used to develop Desktop applications as well as Rich Internet 

Applications (RIA). The applications built in JavaFX, can run on multiple platforms 

including Web, Mobile and Desktops. 

History of JavaFX 

➢ JavaFX was developed by Chris Oliver. Initially the project was named as Form 

Follows Functions (F3). It is intended to provide the richer functionalities for the GUI 

application development. Later, Sun Micro-systems acquired F3 project as JavaFX in 

June 2005. 

➢ Sun Micro-systems announces it officially in 2007 at W3 Conference. In October 2008, 

JavaFX 1.0 was released. In 2009, ORACLE corporation acquires Sun Micro-Systems 

and released JavaFX 1.2. the latest version of JavaFX is JavaFX 1.8 which was released 

on 18th March 2014. 

5.3 JavaFX Controls 

5.3.1 CHECKBOX 

➢ The Check Box is used to provide more than one choice to the user. It can be used in a 

scenario where the user is prompted to select more than one option or the user wants to 

select multiple options. 

➢ It is different from the radiobutton in the sense that, we can select more than one 

checkboxes in a scenerio. 

➢ Instantiate javafx.scene.control.CheckBox class to implement CheckBox. 

 



 

2                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

States of CheckBox: 

➢ Checked: When indeterminate is false and checked is true 

➢ Unchecked: When indeterminate is false and checked is false 

➢ Undefined: When indeterminate is true 

Constructor of the class are: 

CheckBox() : Creates a check box with an empty string for its label. 

CheckBox(String t) : Creates a check box with the given text as its label. 

Commonly used methods: 

Method Explanation 

isIndeterminate() Gets the value of the property indeterminate. 

isSelected() Gets the value of the property selected. 

selectedProperty() Indicates whether this CheckBox is checked. 

setIndeterminate(boolean v) Sets the value of the property indeterminate. 

setSelected(boolean v) Sets the value of the property selected. 

 

Example Program 

package CONTROLS; 

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.CheckBox;   

import javafx.scene.control.Label;   

import javafx.scene.layout.HBox;   

import javafx.stage.Stage;   

public class CHECKBOX extends Application {   

public static void main(String[] args) {   

launch(args);      



 

3                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

}   

@Override   

public void start(Stage primaryStage) throws Exception {   

    // TODO Auto-generated method stub   

    Label l = new Label("What do you listen: ");   

    CheckBox c1 = new CheckBox("Radio one");   

    CheckBox c2 = new CheckBox("Radio Mirchi");   

    CheckBox c3 = new CheckBox("Red FM");   

    CheckBox c4 = new CheckBox("FM GOLD");   

    HBox root = new HBox();   

    root.getChildren().addAll(l,c1,c2,c3,c4);   

    root.setSpacing(5);   

    Scene scene=new Scene(root,800,200);   

    primaryStage.setScene(scene);   

    primaryStage.setTitle("CheckBox Example");   

    primaryStage.show();   

}   

}   

 

 

 

 



 

4                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

OUTPUT 

 

 

5.3.2 TOGGLEBUTTON 

➢ A JavaFX ToggleButton is a button that can be selected or not selected. Like a button 

that stays in when you press it, and when you press it the next time it comes out again. 

Toggled - not toggled.  

➢ The JavaFX ToggleButton is represented by the class 

javafx.scene.control.ToggleButton . 

Creating a ToggleButton 

➢ You create a JavaFX ToggleButton by creating an instance of the ToggleButton class. 

Here is an example of creating a JavaFX ToggleButton instance: 

ToggleButton toggleButton1 = new ToggleButton("Left"); 

➢ This example creates a ToggleButton with the text Left on. 

Example Program 

package controls; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.ToggleButton; 

import javafx.scene.control.ToggleGroup; 

import javafx.scene.layout.HBox; 

import javafx.stage.Stage; 

public class ToggleButtonExperiments extends Application  { 

    @Override 

    public void start(Stage primaryStage) throws Exception { 



 

5                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

        primaryStage.setTitle("HBox Experiment 1"); 

        ToggleButton toggleButton1 = new ToggleButton("Left"); 

        ToggleButton toggleButton2 = new ToggleButton("Right"); 

        ToggleButton toggleButton3 = new ToggleButton("Up"); 

        ToggleButton toggleButton4 = new ToggleButton("Down"); 

        ToggleGroup toggleGroup = new ToggleGroup(); 

        toggleButton1.setToggleGroup(toggleGroup); 

        toggleButton2.setToggleGroup(toggleGroup); 

        toggleButton3.setToggleGroup(toggleGroup); 

        toggleButton4.setToggleGroup(toggleGroup); 

 

        HBox hbox = new HBox(toggleButton1, toggleButton2, toggleButton3, toggleButton4); 

        Scene scene = new Scene(hbox, 200, 100); 

        primaryStage.setScene(scene); 

        primaryStage.show(); 

    } 

    public static void main(String[] args) { 

    launch(args); 

    } 

} 

 

OUTPUT 

 

 

 



 

6                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

5.3.3 RADIOBUTTONS 

➢ The Radio Button is used to provide various options to the user. The user can only 

choose one option among all. A radio button is either selected or deselected. It can be 

used in a scenario of multiple-choice questions in the quiz where only one option needs 

to be chosen by the student. 

Constructors of the RadioButton class: 

1. RadioButton():Creates a radio button with an empty string for its label. 

2. RadioButton(String t):Creates a radio button with the specified text as its label 

Commonly used methods: 

Method Explanation 

getText() returns the textLabel for radio button 

isSelected() returns whether the radiobutton is selected or 

not 

setSelected(boolean b) sets whether the radiobutton is selected or not 

setToggleGroup(ToggleGroup tg) sets the toggle group for the radio button 

 

Example Program 

package CONTROLS; 

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.RadioButton;   

import javafx.scene.control.ToggleGroup;   

import javafx.scene.layout.VBox;   

import javafx.stage.Stage;   

public class RADIOBUTTON extends Application  

{   

public static void main(String[] args)  

{   

launch(args);      

}   

@Override   

public void start(Stage primaryStage) throws Exception {   

    // TODO Auto-generated method stub   



 

7                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

    ToggleGroup group = new ToggleGroup();   

    RadioButton button1 = new RadioButton("option 1");   

    RadioButton button2 = new RadioButton("option 2");   

    RadioButton button3 = new RadioButton("option 3");   

    RadioButton button4 = new RadioButton("option 4");   

    button1.setToggleGroup(group);   

    button2.setToggleGroup(group);   

    button3.setToggleGroup(group);   

    button4.setToggleGroup(group);   

    VBox root=new VBox();   

    root.setSpacing(10);   

    root.getChildren().addAll(button1,button2,button3,button4);   

    Scene scene=new Scene(root,400,300);   

    primaryStage.setScene(scene);   

    primaryStage.setTitle("Radio Button Example");   

    primaryStage.show();   

}   

}   

 

OUTPUT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

 

 

5.3.4 LISTVIEW 

 

➢ A list view is a scrollable list of items from which you can select desired items. You 

can create a list view component by instantiating the javafx.scene.control.ListView 

class. You can create either a vertical or a horizontal ListView. 

Syntax:  

Creating a ListView 

ListView listView = new ListView(); 

Adding Items to a ListView 

listView.getItems().add("Item 1"); 

listView.getItems().add("Item 2"); 

listView.getItems().add("Item 3"); 

Example Program 

package CONTROLS; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.ListView; 

import javafx.scene.layout.HBox; 

import javafx.stage.Stage; 

public class LISTVIEW extends Application   

{ 

 @Override 

    public void start(Stage primaryStage) throws Exception  

      { 

        primaryStage.setTitle("ListView Experiment 1"); 

        ListView<String> listView = new ListView<String>(); 

        listView.getItems().add("Item 1"); 

        listView.getItems().add("Item 2"); 

        listView.getItems().add("Item 3"); 

        HBox hbox = new HBox(listView); 

        Scene scene = new Scene(hbox, 300, 120); 

        primaryStage.setScene(scene); 

        primaryStage.show(); 



 

9                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

    } 

    public static void main(String[] args) 

   { 

        launch(args); 

    } 

} 

 

OUTPUT 

 

 

 

 

5.3.5 COMBOBOX 

 

➢ ComboBox is a part of the JavaFX library. JavaFX ComboBox is an implementation 

of simple ComboBox which shows a list of items out of which user can select at 

most one item, it inherits the class ComboBoxBase. 

Constructors of ComboBox: 

➢ ComboBox(): creates a default empty combo box 

➢ ComboBox(ObservableList i): creates a combo box with the given items 

Commonly used Methods:   

Method Explanation 

getEditor() This method gets the value of the property 

editor 

getItems() This method returns the items of the combo 

box 

getVisibleRowCount() This method returns the value of the property 

visibleRowCount. 



 

10                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

setItems(ObservableList v) This method Sets the items of the combo box 

setVisibleRowCount(int v) This method sets the value of the property 

VisibleRowCount 

 

Example Program 

 

package CONTROLS; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.ComboBox; 

import javafx.scene.layout.HBox; 

import javafx.stage.Stage; 

public class COMBOBOX extends Application   

{ 

    @Override 

    public void start(Stage primaryStage) throws Exception  

      { 

        primaryStage.setTitle("ComboBox Experiment 1"); 

        ComboBox<String> comboBox = new ComboBox<String>(); 

        comboBox.getItems().add("Choice 1"); 

        comboBox.getItems().add("Choice 2"); 

        comboBox.getItems().add("Choice 3"); 

        HBox hbox = new HBox(comboBox); 

        Scene scene = new Scene(hbox, 200, 120); 

        primaryStage.setScene(scene); 

        primaryStage.show(); 

      } 

    public static void main(String[] args) { 

        launch(args); 

    } 

} 

 

 

 



 

11                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

OUTPUT 

 

 

5.3.6 CHOICEBOX 

➢ ChoiceBox is a part of the JavaFX package. ChoiceBox shows a set of items and allows 

the user to select a single choice and it will show the currently selected item on the top. 

ChoiceBox by default has no selected item unless otherwise selected. 

Constructor of the ChoiceBox class are: 

➢ ChoiceBox(): Creates a new empty ChoiceBox. 

➢ ChoiceBox(ObservableList items): Creates a new ChoiceBox with the given set of 

items. 

Commonly used methods: 

Method Explanation 

getItems() Gets the value of the property items. 

getValue() Gets the value of the property value. 

hide() Closes the list of choices. 

setItems(ObservableList value) Sets the value of the property items. 

setValue(T value) Sets the value of the property value. 

show() Opens the list of choices. 

 

 

 

 

 

 



 

12                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

Example Program 

package CONTROLS; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.ChoiceBox; 

import javafx.scene.layout.HBox; 

import javafx.stage.Stage; 

public class CHOICEBOX extends Application   

{ 

    @Override 

    public void start(Stage primaryStage) throws Exception { 

        primaryStage.setTitle("ChoiceBox Experiment 1"); 

        ChoiceBox<String> choiceBox = new ChoiceBox<String>(); 

        choiceBox.getItems().add("Choice 1"); 

        choiceBox.getItems().add("Choice 2"); 

        choiceBox.getItems().add("Choice 3"); 

        HBox hbox = new HBox(choiceBox); 

        Scene scene = new Scene(hbox, 200, 100); 

        primaryStage.setScene(scene); 

        primaryStage.show(); 

    } 

    public static void main(String[] args) { 

        launch(args); 

    } 

} 

 

OUTPUT 

 

 



 

13                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

5.3.7 TEXT CONTROLS 

5.3.7.1 JavaFX | TextField  

➢ TextField class is a part of JavaFX package. It is a component that allows the user to 

enter a line of unformatted text, it does not allow multi-line input it only allows the user 

to enter a single line of text. The text can then be used as per requirement. 

Constructor of the TextField class: 

➢ TextField(): creates a new TextField with empty text content 

➢ TextField(String s): creates a new TextField with a initial text . 

Commonly used methods: 

Method Explanation 

setPrefColumnCount(int v) Sets the value of the property 

prefColumnCount. 

setOnAction(EventHandler value) Sets the value of the property onAction. 

setAlignment(Pos v) Sets the value of the property alignment. 

prefColumnCountProperty() The preferred number of text columns 

onActionProperty() The action handler associated with this text 

field, or null if no action handler is assigned. 

getPrefColumnCount() Gets the value of the property 

prefColumnCount. 

getOnAction() Gets the value of the property onAction. 

getAlignment() Gets the value of the property alignment. 

getCharacters() Returns the character sequence backing the 

text field’s content. 

 

5.3.7.2 JavaFX |Password Field 

➢ PasswordField class is a part of JavaFX package. It is a Text field that masks entered 

characters (the characters that are entered are not shown to the user). It allows the user 

to enter a single-line of unformatted text, hence it does not allow multi-line input. 

Constructor of the PasswordField class : 

PasswordField(): creates a new PasswordField 

 

 

 



 

14                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

Example Program for creating TextField and PasswordField 

package CONTROLS;  

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.Button; 

import javafx.scene.control.PasswordField; 

import javafx.scene.control.TextField; 

import javafx.scene.layout.VBox; 

import javafx.stage.Stage;   

public class TEXTFIELD extends Application  

{       

public static void main(String[] args) 

{   

launch(args);      

}     

@Override   

public void start(Stage primaryStage) throws Exception {   

    // TODO Auto-generated method stub   

    TextField tf1=new TextField();   

    PasswordField pass=new PasswordField();   

    Button b = new Button("Submit");   

    VBox root=new VBox(); 

    root.getChildren().addAll(tf1,pass,b); 

    Scene scene=new Scene(root,300,200);   

    primaryStage.setScene(scene);   

    primaryStage.setTitle("Text Field Example");   

    primaryStage.show();   

}   

}   

 

 

 

 



 

15                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

OUTPUT 

 

 

5.3.7.3 Text Area in JavaFx 

 

➢ A text area is a multi-line editor where you can enter text. Unlike previous versions, in 

the latest versions of JavaFX, a TextArea does not allow single lines in it. You can 

create a text area by instantiating the javafx.scene.control.TextArea class. 

Example Program 

package controls; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.TextArea; 

import javafx.scene.layout.VBox; 

import javafx.stage.Stage; 

public class TEXTAREA extends Application   

{ 

    @Override 

    public void start(Stage primaryStage) throws Exception  

      { 

        primaryStage.setTitle("TextArea Experiment 1"); 

        TextArea textArea = new TextArea(); 

        VBox vbox = new VBox(textArea); 

        Scene scene = new Scene(vbox, 200, 100); 

        primaryStage.setScene(scene); 

        primaryStage.show(); 

    } 



 

16                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

    public static void main(String[] args) { 

        launch(args); 

    } 

} 

OUTPUT 

 

 

5.3.8 SCROLLPANE 

 

➢ ScrollPane is a scrollable component used to display a large content in a limited 

space. It contains horizontal and vertical scroll bars. 

Syntax for Creating a ScrollPane 

ScrollPane scrollPane = new ScrollPane(); 

ScrollBar Policy 

You can set up display policy for scroll bar: 

❖ NEVER - Never display 

❖ ALWAYS - Always display 

❖ AS_NEEDED - Display if needed. 

Example Program 

package CONTROLS; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.ScrollPane; 

import javafx.scene.control.ScrollPane.ScrollBarPolicy; 

import javafx.scene.layout.VBox; 

import javafx.stage.Stage; 

public class SCROLLPANE extends Application  

{ 



 

17                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

@Override 

public void start(Stage primaryStage)  

{ 

// setting the title of application 

primaryStage.setTitle("ScrollPane Vertical"); 

// Create a ScrollPane 

ScrollPane scrollPane = new ScrollPane(); 

VBox vBox=new VBox(); 

// Setting the content to the ScrollPane 

scrollPane.setContent(vBox); 

// Always show vertical scroll bar for scrolling 

scrollPane.setVbarPolicy(ScrollBarPolicy.ALWAYS); 

scrollPane.setHbarPolicy(ScrollBarPolicy.NEVER); 

//adding scroll pane to the scene 

Scene scene = new Scene(scrollPane,200,300); 

primaryStage.setScene(scene); 

//showing the output 

primaryStage.show(); 

} 

public static void main(String[] args)  

{ 

//invoking main method from JVM 

launch(args); 

} 

} 

 

OUTPUT 

 



 

18                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

5.4 LAYOUTS 

 

5.4.1 FlowPane 

 

➢ FlowPane class is a part of JavaFX. Flowpane lays out its children in such a way 

that wraps at the flowpane’s boundary.  

➢ A horizontal flowpane (the default) will layout nodes in rows, wrapping at the 

flowpane’s width.  

➢ A vertical flowpane lays out nodes in columns, wrapping at the flowpane’s height. 

FlowPane class inherits Pane class. 

Constructors of the class: 

❖ FlowPane(): Creates a new Horizontal FlowPane layout. 

❖ FlowPane(double h, double v): Creates a new Horizontal FlowPane layout, with 

specified horizontal and vertical gap. 

❖ FlowPane(double h, double v, Node… c): Creates a new Horizontal FlowPane layout, 

with specified horizontal, vertical gap and nodes. 

❖ FlowPane(Node… c): Creates a FlowPane with specified childrens. 

❖ FlowPane(Orientation o): Creates a FlowPane with specified orientation 

❖ FlowPane(Orientation o, double h, double v): Creates a FlowPane with specified 

orientation and specified horizontal and vertical gap. 

❖ FlowPane(Orientation o, double h, double v, Node… c): Creates a FlowPane with 

specified orientation and specified horizontal and vertical gap and specified childrens. 

❖ FlowPane(Orientation o, Node… c): Creates a FlowPane with specified orientation and 

specified nodes. 

Commonly Used Methods: 

Method Explanation 

getAlignment() Returns the value of Alignment of the pane. 

getHgap() Returns the horizontal gap of the flow pane. 

getOrientation() Returns the orientation of the pane. 

getRowValignment() Gets the value of the property 

rowValignment. 

getVgap() Returns the vertical gap of the flow pane. 

setAlignment(Pos v) Set the value of Alignment of the pane. 

setHgap(double v) Sets the horizontal gap of the flow pane. 



 

19                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

setOrientation(Orientation o) Set the orientation of the pane. 

setRowValignment(double v) Sets the value of the property 

rowValignment. 

setVgap(double v) Sets the vertical gap of the flow pane. 

Method Explanation 

 

Example Program 

package LAYOUTS; 

import javafx.application.Application; 

import javafx.scene.Scene;   

import javafx.scene.control.Button; 

import javafx.scene.layout.FlowPane; 

import javafx.stage.Stage;   

   public class FLOWPANE extends Application  

  {   

     

     @Override   

     public void start(Stage primaryStage) throws Exception  

     {   

         Button btn1 = new Button("1");   

         Button btn2 = new Button("2");  

         Button btn3 = new Button("3");   

         Button btn4 = new Button("4");   

         Button btn5 = new Button("5");  

         Button btn6 = new Button("6");   

         Button btn7 = new Button("7");   

         Button btn8 = new Button("8");  

         Button btn9 = new Button("9");   

         Button btn10 = new Button("10");   

         Button btn11 = new Button("11");  

         Button btn12 = new Button("12");   

         FlowPane root = new FlowPane();  

         Scene scene = new Scene(root,100,100);   



 

20                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

           

root.getChildren().addAll(btn1,btn2,btn3,btn4,btn5,btn6,btn7,btn8,btn9,btn10,btn11,btn12);   

         root.setVgap(6);   

         root.setHgap(5);   

         primaryStage.setScene(scene);   

         primaryStage.show();   

     }   

     public static void main(String[] args)  

     {   

         launch(args);   

     }       

 }   

 

OUTPUT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.2 HBox 

 

➢ The JavaFX HBox component is a layout component which positions all its child 

nodes(components) in a horizontal row. It is represented by 

javafx.scene.layout.HBox class. We just need to instantiate HBox class in order to 

create HBox layout. 

Constructors: 

❖ new HBox() : create HBox layout with 0 spacing 

❖ new Hbox(Double spacing) : create HBox layout with a spacing value 

 

 



 

21                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

Methods 

Property Description Setter Methods 

alignment This represents the alignment of the nodes. setAlignment(Double) 

fillHeight This is a boolean property. If you set this property to true 

the height of the nodes will become equal to the height of 

the HBox. 

setFillHeight(Double) 

spacing This represents the space between the nodes in the HBox. 

It is of double type. 

setSpacing(Double) 

 

Example Program 

package LAYOUTS; 

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.Button;   

import javafx.scene.layout.HBox;   

import javafx.stage.Stage;    

public class HORIZONTAL extends Application { 

 @Override 

 public void start(Stage primaryStage) { 

  try  

  { 

   Button btn1 = new Button("1");   

   Button btn2 = new Button("2");   

   Button btn3 = new Button("3");   

   Button btn4 = new Button("4"); 

   HBox root = new HBox();   

   Scene scene = new Scene(root,200,200);   

   root.getChildren().addAll(btn1,btn2,btn3,btn4); 

   root.setSpacing(40);   

   primaryStage.setScene(scene);   

   primaryStage.setHeight(800); 



 

22                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

   primaryStage.setWidth(500); 

   primaryStage.show();   

  }  

  catch(Exception e)  

  { 

   e.printStackTrace(); 

  } 

 } 

 public static void main(String[] args) { 

  launch(args); 

 } 

} 

 

OUTPUT 

 

 

 



 

23                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

5.4.3 VBox 

 

➢ Instead of arranging the nodes in horizontal row, Vbox Layout Pane arranges the 

nodes in a single vertical column. 

➢  It is represented by javafx.scene.layout.VBox class which provides all the methods 

to deal with the styling and the distance among the nodes. This class needs to be 

instantiated in order to implement VBox layout in our application. 

Constructors 

❖ VBox() : creates layout with 0 spacing 

❖ Vbox(Double spacing) : creates layout with a spacing value of double type 

❖ Vbox(Double spacing, Node? children) : creates a layout with the specified spacing 

among the specified child nodes 

❖ Vbox(Node? children) : creates a layout with the specified nodes having 0 spacing 

among them 

Methods 

This Method Provides various properties which are described in the table below. 

Property Description Setter Methods 

Alignment This property is for the alignment of the nodes. setAlignement(Double) 

FillWidth This property is of the boolean type. The Widtht of resizeable 

nodes can be made equal to the Width of the VBox by setting 

this property to true. 

setFillWidth(boolean) 

Spacing This property is to set some spacing among the nodes of 

VBox. 

setSpacing(Double) 

 

 

 

 

 

 

 

 

 



 

24                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

Example Program 

package LAYOUTS; 

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.Button;   

import javafx.scene.layout.VBox;   

import javafx.stage.Stage;   

   public class VERTICAL extends Application  

  {     

     @Override   

     public void start(Stage primaryStage) throws Exception  

     {   

         Button btn1 = new Button("1");   

         Button btn2 = new Button("2");  

         Button btn3 = new Button("3");   

         Button btn4 = new Button("4");   

         Button btn5 = new Button("5");   

         Button btn6 = new Button("6");  

         Button btn7 = new Button("7");   

         Button btn8 = new Button("8");  

         Button btn9 = new Button("9");  

         VBox root = new VBox();   

         root.setSpacing(20); 

         Scene scene = new Scene(root);   

         root.getChildren().addAll(btn1,btn2,btn3,btn4,btn5,btn6,btn7,btn8,btn9);   

         root.setSpacing(40); 

         primaryStage.setScene(scene);   

         primaryStage.show();   

     }   

     public static void main(String[] args)  

     {   

         launch(args);   

     }         



 

25                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

 } 

OUTPUT 

 

 

 

5.4.4 BorderPane 

 

➢ If we use the BorderPane, the nodes are arranged in the Top, Left, Right, Bottom 

and Center positions. 

➢ The class named BorderPane of the package javafx.scene.layout represents the 

BorderPane. 

 

 



 

26                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

This class contains five properties, which include 

• bottom − This property is of Node type and it represents the node placed at the bottom 

of the BorderPane. You can set value to this property using the setter 

method setBottom(). 

• center − This property is of Node type and it represents the node placed at the center 

of the BorderPane. You can set value to this property using the setter 

method setCenter(). 

• left − This property is of Node type and it represents the node placed at the left of the 

BorderPane. You can set value to this property using the setter method setLeft(). 

• right − This property is of Node type and it represents the node placed at the right of 

the BorderPane. You can set value to this property using the setter method setRight(). 

• top − This property is of Node type and it represents the node placed at the top of the 

BorderPane. You can set value to this property using the setter method setTop(). 

Example Program 

package LAYOUTS; 

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.Button; 

import javafx.scene.layout.BorderPane; 

import javafx.stage.Stage;   

   public class BORDERPANE extends Application  

  {    

     @Override   

     public void start(Stage primaryStage) throws Exception  

     {   

         Button btn1 = new Button("1");   

         Button btn2 = new Button("2");  

         Button btn3 = new Button("3");   

         BorderPane root = new BorderPane();  

         root.setBottom(btn1); 

         root.setCenter(btn2); 

         root.setTop(btn3); 

         Scene scene = new Scene(root);  



 

27                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

         primaryStage.setScene(scene);   

         primaryStage.setWidth(500); 

         primaryStage.setHeight(500); 

         primaryStage.show();   

     }   

     public static void main(String[] args)  

     {   

         launch(args);   

     }      

 }   

OUTPUT 

 

 

 

 

 



 

28                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

5.4.5 StackPane 

 

➢ The StackPane layout pane places all the nodes into a single stack where every new 

node gets placed on the top of the previous node. It is represented by 

javafx.scene.layout.StackPane class. We just need to instantiate this class to implement 

StackPane layout into our application. 

Properties 

The class contains only one property that is given below along with its setter method. 

Property Description Setter Method 

alignment It represents the default 

alignment of children within 

the StackPane's width and 

height 

setAlignment(Node child, 

Pos value) 

 

Constructors 

The class contains two constructors that are given below. 

❖ StackPane() 

❖ StackPane(Node? Children) 

Example Program 

package LAYOUTS; 

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.Button;   

import javafx.scene.layout.StackPane;   

import javafx.stage.Stage;   

public class STACKPANE extends Application {   

    @Override   

    public void start(Stage primaryStage) throws Exception {   

        Button btn1 = new Button("Button 1 on bottom ");   

        Button btn2 = new Button("Button 2 on top");   

        StackPane root = new StackPane();   

        Scene scene = new Scene(root,200,200);   

        root.getChildren().addAll(btn1,btn2);   



 

29                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

        primaryStage.setScene(scene);   

        primaryStage.show();   

    }   

    public static void main(String[] args) {   

        launch(args);   

    }        

}   

 

OUTPUT 

 

 

5.4.6 GridPane 

 

➢ GridPane Layout pane allows us to add the multiple nodes in multiple rows and 

columns. It is seen as a flexible grid of rows and columns where nodes can be placed 

in any cell of the grid. 

➢ It is represented by javafx.scence.layout.GridPane class. We just need to instantiate this 

class to implement GridPane. 

Following are the cell positions in the grid pane of JavaFX − 

(0, 0) (1, 0) (2, 0) 

(2, 1) (1, 1) (0, 1) 

(2, 2) (1, 2) (0, 2) 

 

 

 

 

 



 

30                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

Properties 

➢ The properties of the class along with their setter methods are given in the table below. 

Property Description Setter Methods 

alignment Represents the 

alignment of the grid 

within the GridPane. 

setAlignment(Pos value) 

gridLinesVisible This property is intended 

for debugging. Lines can 

be displayed to show the 

gridpane's rows and 

columns by setting this 

property to true. 

setGridLinesVisible(Boolean 

value) 

hgap Horizontal gaps among 

the columns 

setHgap(Double value) 

vgap Vertical gaps among the 

rows 

setVgap(Double value) 

 

Constructors 

❖ The class contains only one constructor that is given below. 

Public GridPane(): creates a gridpane with 0 hgap/vgap 

Example Program 

package LAYOUTS; 

import javafx.application.Application;   

import javafx.scene.Scene;   

import javafx.scene.control.Button; 

import javafx.scene.layout.GridPane; 

import javafx.stage.Stage;   

   public class GRIDPANE extends Application  

  {     

     @Override   

     public void start(Stage primaryStage) throws Exception  

     {   

         Button btn1 = new Button("1");   



 

31                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

         Button btn2 = new Button("2");  

         Button btn3 = new Button("3");   

         GridPane root = new GridPane();  

         root.add(btn1, 0, 0); 

         root.add(btn2, 1, 1); 

         root.add(btn3, 2, 2); 

         Scene scene = new Scene(root);  

         root.setGridLinesVisible(false); 

         root.setVgap(10);   

         root.setHgap(10);   

         primaryStage.setScene(scene);   

         primaryStage.show();   

     }   

     public static void main(String[] args)  

     {   

         launch();   

     }      

 }   

OUTPUT 

 

 

 

 

 

 

 



 

32                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

5.5 MENUS, MENU ITEMS AND MENU BAR 

➢ Menu is the main component of a any application. Menu is a popup menu that contains 

several menu items that are displayed when the user clicks a menu. The user can select 

a menu item after which the menu goes into a hidden state. 

➢ JavaFX provides a Menu class to implement menus.  

➢ In JavaFX, javafx.scene.control.Menu class provides all the methods to deal with 

menus. This class needs to be instantiated to create a Menu. 

➢ MenuBar is usually placed at the top of the screen which contains several menus. 

JavaFX MenuBar is typically an implementation of a menu bar. 

Constructor of the MenuBar class are: 

➢ MenuBar(): creates a new empty menubar. 

➢ MenuBar(Menu… m): creates a new menubar with the given set of menu. 

Constructor of the Menu class are: 

➢ Menu(): creates an empty menu 

➢ Menu(String s): creates a menu with a string as its label 

➢ Menu(String s, Node n):Constructs a Menu and sets the display text with the specified 

text and sets the graphic Node to the given node. 

➢ Menu(String s, Node n, MenuItem… i):Constructs a Menu and sets the display text 

with the specified text, the graphic Node to the given node, and inserts the given items 

into the items list. 

Commonly used methods: 

Method Explanation 

getItems() returns the items of the menu 

hide() hide the menu 

show() show the menu 

getMenus() The menus to show within this MenuBar. 

isUseSystemMenuBar() Gets the value of the property 

useSystemMenuBar 

setUseSystemMenuBar(boolean v) Sets the value of the property 

useSystemMenuBar. 

setOnHidden(EventHandler v) Sets the value of the property onHidden. 

setOnHiding(EventHandler v) Sets the value of the property onHiding. 

setOnShowing(EventHandler v) Sets the value of the property onShowing. 



 

33                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

Example Program for Creating Menus 

package Menues; 

import javafx.application.Application; 

import javafx.stage.Stage; 

import javafx.scene.Scene; 

import javafx.scene.control.Menu; 

import javafx.scene.control.MenuBar; 

import javafx.scene.layout.BorderPane; 

public class Main extends Application { 

 @Override 

 public void start(Stage primaryStage) { 

  try { 

   //how to create menu in JavaFx 

   //Let us now create a Menu bar 

   MenuBar main_menu=new MenuBar(); 

   Menu File=new Menu("File"); 

   Menu Edit=new Menu("Edit"); 

   Menu Source=new Menu("Source"); 

   Menu Refactor=new Menu("Refactor"); 

   // Mapping all the menu objects to menu bar 

   main_menu.getMenus().add(File); 

   main_menu.getMenus().add(Edit); 

   main_menu.getMenus().add(Source); 

   main_menu.getMenus().add(Refactor); 

                   // Create a Layout and add the menu bar to the Layout 

   BorderPane root=new BorderPane(); 

   root.setTop(main_menu); 

   //we need to add this Layout to the Scene 

   Scene sc=new Scene(root); 

   primaryStage.setScene(sc); 

   primaryStage.setWidth(500); 

   primaryStage.setHeight(500); 

   primaryStage.show(); 



 

34                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

  } catch(Exception e) { 

   e.printStackTrace(); 

  } 

 } 

 public static void main(String[] args) { 

  launch(args); 

 } 

} 

 

OUTPUT 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

35                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

Example Program for Creating Menu Items 

 

package Menues; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.Menu; 

import javafx.scene.control.MenuBar; 

import javafx.scene.control.MenuItem; 

import javafx.scene.layout.BorderPane; 

import javafx.stage.Stage; 

public class MENUITEMS extends Application  

{ 

 @Override 

 public void start(Stage primaryStage)  

 { 

 try  

 { 

 MenuBar main_menu=new MenuBar(); 

 Menu File=new Menu("File"); 

 Menu Edit=new Menu("Edit"); 

 Menu Source=new Menu("Source"); 

 Menu Refactor=new Menu("Refactor"); 

 // Mapping all the menu objects to menu bar 

 main_menu.getMenus().add(File); 

 main_menu.getMenus().add(Edit); 

 main_menu.getMenus().add(Source); 

 main_menu.getMenus().add(Refactor); 

 //Let us add Menu Items for File Menu 

 MenuItem New=new MenuItem("New"); 

 MenuItem OpenFile=new MenuItem("Open File..."); 

 MenuItem OpenProjects=new MenuItem("Open Projects From File 

Systems..."); 

 MenuItem RecentFiles=new MenuItem("Recent Files"); 

 MenuItem Save=new MenuItem("Save"); 



 

36                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

 //Map the Menu Items to the File Menu 

 File.getItems().add(New); 

 File.getItems().add(OpenFile); 

 File.getItems().add(OpenProjects); 

 File.getItems().add(RecentFiles); 

 File.getItems().add(Save); 

                          // Create a Layout and add the menu bar to the Layout 

 BorderPane root=new BorderPane(); 

 root.setTop(main_menu); 

 // we need to add this Layout to the Scene 

 Scene sc=new Scene(root); 

 primaryStage.setScene(sc); 

 primaryStage.setWidth(500); 

 primaryStage.setHeight(500); 

 primaryStage.show(); 

   } 

 catch(Exception e)  

    { 

  e.printStackTrace(); 

    } 

} 

public static void main(String[] args)  

{ 

launch(args); 

} 

} 

 

 

 

 

 

 

 



 

37                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

OUTPUT 

 

 

 

Example Program for Creating Sub Menus using JavaFx 

 

package Menues; 

import javafx.application.Application; 

import javafx.scene.Scene; 

import javafx.scene.control.Menu; 

import javafx.scene.control.MenuBar; 

import javafx.scene.control.MenuItem; 

import javafx.scene.layout.BorderPane; 

import javafx.stage.Stage; 

public class SUBMENU extends Application  

{ 

 @Override 

 public void start(Stage primaryStage)  



 

38                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

 { 

 try  

 { 

 MenuBar main_menu=new MenuBar(); 

 Menu File=new Menu("File"); 

 Menu Edit=new Menu("Edit"); 

 Menu Source=new Menu("Source"); 

 Menu Refactor=new Menu("Refactor"); 

 // Mapping all the menu objects to menu bar 

 main_menu.getMenus().add(File); 

 main_menu.getMenus().add(Edit); 

 main_menu.getMenus().add(Source); 

 main_menu.getMenus().add(Refactor); 

 //Let us add Menu Items for File Menu 

 Menu New=new Menu("New"); //New is not a menu item its a menu 

 MenuItem OpenFile=new MenuItem("Open File..."); 

 MenuItem OpenProjects=new MenuItem("Open Projects From File Systems..."); 

 MenuItem RecentFiles=new MenuItem("Recent Files"); 

 MenuItem Save=new MenuItem("Save"); 

 //We will create Menu Items for New Menu 

 MenuItem JavaProject=new MenuItem("Java Project"); 

 MenuItem Project=new MenuItem("Project"); 

 MenuItem Package1=new MenuItem("Package"); 

 MenuItem Class1=new MenuItem("Class"); 

 //Mapping Menu Items to Menu New 

 New.getItems().add(JavaProject); 

 New.getItems().add(Project); 

 New.getItems().add(Package1); 

 New.getItems().add(Class1); 

 //Map the Menu Items to the File Menu 

 File.getItems().add(New); 

 File.getItems().add(OpenFile); 

 File.getItems().add(OpenProjects); 



 

39                                        PREPARED BY: BASTIN ROGERS C, AP/CSE, SMCE 

 

UNIT-5 CS3391-OOP 

 File.getItems().add(RecentFiles); 

 File.getItems().add(Save); 

            // Create a Layout and add the menu bar to the Layout 

 BorderPane root=new BorderPane(); 

 root.setTop(main_menu); 

 //we need to add this Layout to the Scene 

 Scene sc=new Scene(root); 

 primaryStage.setScene(sc); 

 primaryStage.setWidth(500); 

 primaryStage.setHeight(500); 

 primaryStage.show(); 

   } 

 catch(Exception e)  

    { 

  e.printStackTrace(); 

    } 

} 

public static void main(String[] args)  

{ 

launch(args); 

} 

} 

OUTPUT 

 


	CS3392 UNIT-1 .pdf
	UNIT-2
	UNIT 3
	UNIT 4
	UNIT 5

